Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567225040> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W1567225040 abstract "Learning to rank has considered as a promising approach for ranking in information retrieval. In recent years feature selection for learning to rank introduced as a crucial issue. Reducing the feature set by removing irrelevant and redundant features can improve the prediction performance. In this paper we address the problem of filter feature selection for ranking. We propose to apply minimum redundancy maximum relevance (mRMR) method that select feature subset based on importance of features and similarity between them. We reweight the component of mRMR to balance between importance and similarity. We apply two methods for measuring the similarity between features and two methods for evaluating importance. Experimental results on two standard datasets from Letor demonstrate that the proposed algorithm 1)outperform two stateof- the-art learning to rank algorithms in term of accuracy, 2) learn a more spars model compared to a feature selection model for ranking." @default.
- W1567225040 created "2016-06-24" @default.
- W1567225040 creator A5012900511 @default.
- W1567225040 creator A5031008264 @default.
- W1567225040 date "2015-04-12" @default.
- W1567225040 modified "2023-09-24" @default.
- W1567225040 title "A feature selection method based on minimum redundancy maximum relevance for learning to rank" @default.
- W1567225040 cites W1826065584 @default.
- W1567225040 cites W2007815473 @default.
- W1567225040 cites W2035720976 @default.
- W1567225040 cites W2071515827 @default.
- W1567225040 cites W2103235295 @default.
- W1567225040 cites W2108862644 @default.
- W1567225040 cites W2127176025 @default.
- W1567225040 cites W2138957616 @default.
- W1567225040 cites W4302313152 @default.
- W1567225040 doi "https://doi.org/10.1109/rios.2015.7270735" @default.
- W1567225040 hasPublicationYear "2015" @default.
- W1567225040 type Work @default.
- W1567225040 sameAs 1567225040 @default.
- W1567225040 citedByCount "14" @default.
- W1567225040 countsByYear W15672250402016 @default.
- W1567225040 countsByYear W15672250402019 @default.
- W1567225040 countsByYear W15672250402021 @default.
- W1567225040 countsByYear W15672250402022 @default.
- W1567225040 crossrefType "proceedings-article" @default.
- W1567225040 hasAuthorship W1567225040A5012900511 @default.
- W1567225040 hasAuthorship W1567225040A5031008264 @default.
- W1567225040 hasConcept C103278499 @default.
- W1567225040 hasConcept C106131492 @default.
- W1567225040 hasConcept C111919701 @default.
- W1567225040 hasConcept C114614502 @default.
- W1567225040 hasConcept C115961682 @default.
- W1567225040 hasConcept C119857082 @default.
- W1567225040 hasConcept C124101348 @default.
- W1567225040 hasConcept C124975894 @default.
- W1567225040 hasConcept C138885662 @default.
- W1567225040 hasConcept C148483581 @default.
- W1567225040 hasConcept C152124472 @default.
- W1567225040 hasConcept C153180895 @default.
- W1567225040 hasConcept C154945302 @default.
- W1567225040 hasConcept C158154518 @default.
- W1567225040 hasConcept C164226766 @default.
- W1567225040 hasConcept C16811321 @default.
- W1567225040 hasConcept C17744445 @default.
- W1567225040 hasConcept C189430467 @default.
- W1567225040 hasConcept C199539241 @default.
- W1567225040 hasConcept C2776401178 @default.
- W1567225040 hasConcept C31972630 @default.
- W1567225040 hasConcept C33923547 @default.
- W1567225040 hasConcept C41008148 @default.
- W1567225040 hasConcept C41895202 @default.
- W1567225040 hasConcept C86037889 @default.
- W1567225040 hasConceptScore W1567225040C103278499 @default.
- W1567225040 hasConceptScore W1567225040C106131492 @default.
- W1567225040 hasConceptScore W1567225040C111919701 @default.
- W1567225040 hasConceptScore W1567225040C114614502 @default.
- W1567225040 hasConceptScore W1567225040C115961682 @default.
- W1567225040 hasConceptScore W1567225040C119857082 @default.
- W1567225040 hasConceptScore W1567225040C124101348 @default.
- W1567225040 hasConceptScore W1567225040C124975894 @default.
- W1567225040 hasConceptScore W1567225040C138885662 @default.
- W1567225040 hasConceptScore W1567225040C148483581 @default.
- W1567225040 hasConceptScore W1567225040C152124472 @default.
- W1567225040 hasConceptScore W1567225040C153180895 @default.
- W1567225040 hasConceptScore W1567225040C154945302 @default.
- W1567225040 hasConceptScore W1567225040C158154518 @default.
- W1567225040 hasConceptScore W1567225040C164226766 @default.
- W1567225040 hasConceptScore W1567225040C16811321 @default.
- W1567225040 hasConceptScore W1567225040C17744445 @default.
- W1567225040 hasConceptScore W1567225040C189430467 @default.
- W1567225040 hasConceptScore W1567225040C199539241 @default.
- W1567225040 hasConceptScore W1567225040C2776401178 @default.
- W1567225040 hasConceptScore W1567225040C31972630 @default.
- W1567225040 hasConceptScore W1567225040C33923547 @default.
- W1567225040 hasConceptScore W1567225040C41008148 @default.
- W1567225040 hasConceptScore W1567225040C41895202 @default.
- W1567225040 hasConceptScore W1567225040C86037889 @default.
- W1567225040 hasLocation W15672250401 @default.
- W1567225040 hasOpenAccess W1567225040 @default.
- W1567225040 hasPrimaryLocation W15672250401 @default.
- W1567225040 hasRelatedWork W176977165 @default.
- W1567225040 hasRelatedWork W2104465941 @default.
- W1567225040 hasRelatedWork W2114531539 @default.
- W1567225040 hasRelatedWork W2128281062 @default.
- W1567225040 hasRelatedWork W2159175164 @default.
- W1567225040 hasRelatedWork W2267257308 @default.
- W1567225040 hasRelatedWork W2293317945 @default.
- W1567225040 hasRelatedWork W2801886677 @default.
- W1567225040 hasRelatedWork W2909867291 @default.
- W1567225040 hasRelatedWork W2954428433 @default.
- W1567225040 isParatext "false" @default.
- W1567225040 isRetracted "false" @default.
- W1567225040 magId "1567225040" @default.
- W1567225040 workType "article" @default.