Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567251170> ?p ?o ?g. }
- W1567251170 abstract "Composite materials are widely utilized in a number of fields, such as materials science, metallurgy, polymer science, interface science, mechanical engineering and aerospace engineering. In this chapter, as an application of a composite material layer (thin film) produced by co-sputtering to the hard X-ray focusing optical technique, a multilayer Fresnel zone plate (ML-FZP) with high diffraction efficiency is described. X-rays in the energy region of 100 – 2,000 eV (2 keV) are called soft X-rays (Snigirev & Snigireva, 2008), while those with higher energy are called hard X-rays. Soft X-rays, especially in the “water window” region (Spiller, 1994), are mainly used in the field of biotechnology. On the other hand, hard X-rays are used in various research fields, including materials science, environmental science and medical science. High brilliant hard X-ray beams with submicronor nanometre-scale spot sizes generated by third-generation synchrotron radiation (SR) facilities such as the APS (USA), ESRF (France) or SPring-8 (Japan), especially for use in the high-energy region, have great potential for use in various fields of research. They are remarkably powerful tools. Recently, higher energy (shorter wavelength) X-ray beams above 20 keV have been utilised in a number of applications, including residual stress measurement in metal matrix composites at 40 keV (Korsunsky & Wells, 2000), local strain measurement within bulk materials at 52 and 90 keV (Lienert et al., 2000), a novel experimental scheme for high-resolution X-ray analysis of deeply buried interfaces at 71.3 keV (Reichert et al., 2003), study of the ice–SiO2 model interface, using X-ray transmission–reflection scheme at 71.3 keV (Engemann et al., 2004), mapping of Sr in (Ba,Sr)TiO3 dielectric ceramics using Ka fluorescence X-rays at 25 keV (Takeuchi et al., 2005), micro-XRF (X-ray fluorescence) analysis of heavy metals in the cells of hyperaccumulator plants at 37 and 75 keV (Terada et al., 2004; Terada et al., 2005), non-destructive imaging of integrated circuits (ICs) at 25 keV, and imaging of Au mesh by three types of X-ray microscopy at 82 keV (Awaji et al., 2003; Suzuki et al., 2006). In addition, microscopic imaging of Au mesh at 200 keV has also been reported (Kamijo et al., 2009). Many types of focusing optics have been developed for hard X-rays and their focusing abilities have been improved over the past two decades. Especially within the last several years, there have been dramatic changes in the performances of focusing optics. The main types of focusing optics and their performances are shown in Fig. 1." @default.
- W1567251170 created "2016-06-24" @default.
- W1567251170 creator A5005795857 @default.
- W1567251170 date "2011-07-20" @default.
- W1567251170 modified "2023-10-02" @default.
- W1567251170 title "Multilayer Fresnel Zone Plate with High-Diffraction Efficiency: Application of Composite Layer to X-Ray Optics" @default.
- W1567251170 cites W1578667960 @default.
- W1567251170 cites W1666629569 @default.
- W1567251170 cites W174453511 @default.
- W1567251170 cites W1964165182 @default.
- W1567251170 cites W1964856120 @default.
- W1567251170 cites W1965503152 @default.
- W1567251170 cites W1973606105 @default.
- W1567251170 cites W1976766308 @default.
- W1567251170 cites W1983348412 @default.
- W1567251170 cites W1993371616 @default.
- W1567251170 cites W1994381253 @default.
- W1567251170 cites W1997038780 @default.
- W1567251170 cites W1997892290 @default.
- W1567251170 cites W2000256146 @default.
- W1567251170 cites W2009659238 @default.
- W1567251170 cites W2011156041 @default.
- W1567251170 cites W2013168482 @default.
- W1567251170 cites W2013466813 @default.
- W1567251170 cites W2022412633 @default.
- W1567251170 cites W2023215318 @default.
- W1567251170 cites W2028209501 @default.
- W1567251170 cites W2032729403 @default.
- W1567251170 cites W2036085235 @default.
- W1567251170 cites W203635088 @default.
- W1567251170 cites W2039786500 @default.
- W1567251170 cites W2040179900 @default.
- W1567251170 cites W2042705332 @default.
- W1567251170 cites W2042884147 @default.
- W1567251170 cites W2044838837 @default.
- W1567251170 cites W2047310531 @default.
- W1567251170 cites W2051188299 @default.
- W1567251170 cites W2055171919 @default.
- W1567251170 cites W2058519693 @default.
- W1567251170 cites W2061368258 @default.
- W1567251170 cites W2061915012 @default.
- W1567251170 cites W2062300061 @default.
- W1567251170 cites W2064756558 @default.
- W1567251170 cites W2069811210 @default.
- W1567251170 cites W2075717230 @default.
- W1567251170 cites W2080109869 @default.
- W1567251170 cites W2084143989 @default.
- W1567251170 cites W2085588266 @default.
- W1567251170 cites W2086371392 @default.
- W1567251170 cites W2088960233 @default.
- W1567251170 cites W2089757108 @default.
- W1567251170 cites W2090168048 @default.
- W1567251170 cites W2091564194 @default.
- W1567251170 cites W2104591134 @default.
- W1567251170 cites W2107721650 @default.
- W1567251170 cites W2128129872 @default.
- W1567251170 cites W2151072380 @default.
- W1567251170 cites W2152514013 @default.
- W1567251170 cites W2511181703 @default.
- W1567251170 cites W2065327333 @default.
- W1567251170 cites W615317677 @default.
- W1567251170 doi "https://doi.org/10.5772/19130" @default.
- W1567251170 hasPublicationYear "2011" @default.
- W1567251170 type Work @default.
- W1567251170 sameAs 1567251170 @default.
- W1567251170 citedByCount "3" @default.
- W1567251170 countsByYear W15672511702016 @default.
- W1567251170 countsByYear W15672511702019 @default.
- W1567251170 countsByYear W15672511702022 @default.
- W1567251170 crossrefType "book-chapter" @default.
- W1567251170 hasAuthorship W1567251170A5005795857 @default.
- W1567251170 hasBestOaLocation W15672511701 @default.
- W1567251170 hasConcept C104779481 @default.
- W1567251170 hasConcept C120665830 @default.
- W1567251170 hasConcept C121332964 @default.
- W1567251170 hasConcept C159985019 @default.
- W1567251170 hasConcept C192562407 @default.
- W1567251170 hasConcept C200292535 @default.
- W1567251170 hasConcept C207114421 @default.
- W1567251170 hasConcept C2779227376 @default.
- W1567251170 hasConcept C2779328170 @default.
- W1567251170 hasConcept C32623475 @default.
- W1567251170 hasConcept C50282329 @default.
- W1567251170 hasConceptScore W1567251170C104779481 @default.
- W1567251170 hasConceptScore W1567251170C120665830 @default.
- W1567251170 hasConceptScore W1567251170C121332964 @default.
- W1567251170 hasConceptScore W1567251170C159985019 @default.
- W1567251170 hasConceptScore W1567251170C192562407 @default.
- W1567251170 hasConceptScore W1567251170C200292535 @default.
- W1567251170 hasConceptScore W1567251170C207114421 @default.
- W1567251170 hasConceptScore W1567251170C2779227376 @default.
- W1567251170 hasConceptScore W1567251170C2779328170 @default.
- W1567251170 hasConceptScore W1567251170C32623475 @default.
- W1567251170 hasConceptScore W1567251170C50282329 @default.
- W1567251170 hasLocation W15672511701 @default.
- W1567251170 hasLocation W15672511702 @default.
- W1567251170 hasOpenAccess W1567251170 @default.
- W1567251170 hasPrimaryLocation W15672511701 @default.
- W1567251170 hasRelatedWork W1966952418 @default.
- W1567251170 hasRelatedWork W1980315343 @default.