Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567457275> ?p ?o ?g. }
- W1567457275 endingPage "56" @default.
- W1567457275 startingPage "31" @default.
- W1567457275 abstract "In this article we introduce new methods for the analysis of high dimensional data in tensor formats, where the underling data come from the stochastic elliptic boundary value problem. After discretisation of the deterministic operator as well as the presented random fields via KLE and PCE, the obtained high dimensional operator can be approximated via sums of elementary tensors. This tensors representation can be effectively used for computing different values of interest, such as maximum norm, level sets and cumulative distribution function. The basic concept of the data analysis in high dimensions is discussed on tensors represented in the canonical format, however the approach can be easily used in other tensor formats. As an intermediate step we describe efficient iterative algorithms for computing the characteristic and sign functions as well as pointwise inverse in the canonical tensor format. Since during majority of algebraic operations as well as during iteration steps the representation rank grows up, we use lower-rank approximation and inexact recursive iteration schemes." @default.
- W1567457275 created "2016-06-24" @default.
- W1567457275 creator A5026561932 @default.
- W1567457275 creator A5037684251 @default.
- W1567457275 creator A5069975041 @default.
- W1567457275 creator A5084653980 @default.
- W1567457275 creator A5087474564 @default.
- W1567457275 date "2012-01-01" @default.
- W1567457275 modified "2023-10-17" @default.
- W1567457275 title "Efficient Analysis of High Dimensional Data in Tensor Formats" @default.
- W1567457275 cites W1646309082 @default.
- W1567457275 cites W1674073379 @default.
- W1567457275 cites W1935801564 @default.
- W1567457275 cites W1970942811 @default.
- W1567457275 cites W1971746901 @default.
- W1567457275 cites W1975206377 @default.
- W1567457275 cites W1992066335 @default.
- W1567457275 cites W2003365929 @default.
- W1567457275 cites W2016125303 @default.
- W1567457275 cites W2024016211 @default.
- W1567457275 cites W2033721384 @default.
- W1567457275 cites W2041686979 @default.
- W1567457275 cites W2048791667 @default.
- W1567457275 cites W2053211759 @default.
- W1567457275 cites W2055460625 @default.
- W1567457275 cites W2056404710 @default.
- W1567457275 cites W2058362163 @default.
- W1567457275 cites W2061604462 @default.
- W1567457275 cites W2064332562 @default.
- W1567457275 cites W2069379427 @default.
- W1567457275 cites W2071529930 @default.
- W1567457275 cites W2083754610 @default.
- W1567457275 cites W2083845086 @default.
- W1567457275 cites W2103455761 @default.
- W1567457275 cites W2103621341 @default.
- W1567457275 cites W2113517083 @default.
- W1567457275 cites W2128811293 @default.
- W1567457275 cites W2150175265 @default.
- W1567457275 cites W2151084831 @default.
- W1567457275 cites W2168962894 @default.
- W1567457275 cites W227905838 @default.
- W1567457275 cites W37188682 @default.
- W1567457275 cites W4210300254 @default.
- W1567457275 cites W4242845254 @default.
- W1567457275 doi "https://doi.org/10.1007/978-3-642-31703-3_2" @default.
- W1567457275 hasPublicationYear "2012" @default.
- W1567457275 type Work @default.
- W1567457275 sameAs 1567457275 @default.
- W1567457275 citedByCount "21" @default.
- W1567457275 countsByYear W15674572752013 @default.
- W1567457275 countsByYear W15674572752014 @default.
- W1567457275 countsByYear W15674572752015 @default.
- W1567457275 countsByYear W15674572752016 @default.
- W1567457275 countsByYear W15674572752017 @default.
- W1567457275 countsByYear W15674572752018 @default.
- W1567457275 countsByYear W15674572752019 @default.
- W1567457275 countsByYear W15674572752021 @default.
- W1567457275 crossrefType "book-chapter" @default.
- W1567457275 hasAuthorship W1567457275A5026561932 @default.
- W1567457275 hasAuthorship W1567457275A5037684251 @default.
- W1567457275 hasAuthorship W1567457275A5069975041 @default.
- W1567457275 hasAuthorship W1567457275A5084653980 @default.
- W1567457275 hasAuthorship W1567457275A5087474564 @default.
- W1567457275 hasBestOaLocation W15674572752 @default.
- W1567457275 hasConcept C104317684 @default.
- W1567457275 hasConcept C134306372 @default.
- W1567457275 hasConcept C136119220 @default.
- W1567457275 hasConcept C155281189 @default.
- W1567457275 hasConcept C158448853 @default.
- W1567457275 hasConcept C17020691 @default.
- W1567457275 hasConcept C185592680 @default.
- W1567457275 hasConcept C202444582 @default.
- W1567457275 hasConcept C2777984123 @default.
- W1567457275 hasConcept C28826006 @default.
- W1567457275 hasConcept C33923547 @default.
- W1567457275 hasConcept C41008148 @default.
- W1567457275 hasConcept C55493867 @default.
- W1567457275 hasConcept C86339819 @default.
- W1567457275 hasConceptScore W1567457275C104317684 @default.
- W1567457275 hasConceptScore W1567457275C134306372 @default.
- W1567457275 hasConceptScore W1567457275C136119220 @default.
- W1567457275 hasConceptScore W1567457275C155281189 @default.
- W1567457275 hasConceptScore W1567457275C158448853 @default.
- W1567457275 hasConceptScore W1567457275C17020691 @default.
- W1567457275 hasConceptScore W1567457275C185592680 @default.
- W1567457275 hasConceptScore W1567457275C202444582 @default.
- W1567457275 hasConceptScore W1567457275C2777984123 @default.
- W1567457275 hasConceptScore W1567457275C28826006 @default.
- W1567457275 hasConceptScore W1567457275C33923547 @default.
- W1567457275 hasConceptScore W1567457275C41008148 @default.
- W1567457275 hasConceptScore W1567457275C55493867 @default.
- W1567457275 hasConceptScore W1567457275C86339819 @default.
- W1567457275 hasLocation W15674572751 @default.
- W1567457275 hasLocation W15674572752 @default.
- W1567457275 hasLocation W15674572753 @default.
- W1567457275 hasOpenAccess W1567457275 @default.
- W1567457275 hasPrimaryLocation W15674572751 @default.
- W1567457275 hasRelatedWork W1025150868 @default.