Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567475771> ?p ?o ?g. }
- W1567475771 endingPage "1715" @default.
- W1567475771 startingPage "1711" @default.
- W1567475771 abstract "The performance of Independent Component Analysis (ICA) methods significantly depends on the choice of the contrast function and the optimisation algorithm used in obtaining the demixing matrix. It has been shown that nonparametric ICA approaches are more robust than its parametric counterparts. One basic nonparametric ICA contrast was developed by approximating mutual information using kernel density estimations. In this work we study the kernel density estimation based linear ICA problem from an optimisation point of view. Two geometric methods are proposed to optimise the kernel density estimation based linear ICA contrast function, a Jacobi-type method and an approximate Newton-like method. Rigorous analysis shows that both geometric methods converge locally quadratically fast to the correct demixing. The performance of the proposed algorithms is investigated by numerical experiments." @default.
- W1567475771 created "2016-06-24" @default.
- W1567475771 creator A5015357417 @default.
- W1567475771 creator A5052847653 @default.
- W1567475771 creator A5055847035 @default.
- W1567475771 date "2007-09-03" @default.
- W1567475771 modified "2023-09-28" @default.
- W1567475771 title "Efficient geometric methods for kernel density estimation based Independent Component Analysis" @default.
- W1567475771 cites W1501315713 @default.
- W1567475771 cites W1548802052 @default.
- W1567475771 cites W2019502123 @default.
- W1567475771 cites W2043905695 @default.
- W1567475771 cites W2072449525 @default.
- W1567475771 cites W2089187870 @default.
- W1567475771 cites W2090847589 @default.
- W1567475771 cites W2099741732 @default.
- W1567475771 cites W2106565812 @default.
- W1567475771 cites W2110841704 @default.
- W1567475771 cites W2110882038 @default.
- W1567475771 cites W2124101779 @default.
- W1567475771 cites W2125029645 @default.
- W1567475771 cites W2132637896 @default.
- W1567475771 cites W2145544165 @default.
- W1567475771 cites W2147614211 @default.
- W1567475771 cites W2167217202 @default.
- W1567475771 cites W2188446830 @default.
- W1567475771 cites W2234318807 @default.
- W1567475771 cites W2798909945 @default.
- W1567475771 doi "https://doi.org/10.5281/zenodo.40553" @default.
- W1567475771 hasPublicationYear "2007" @default.
- W1567475771 type Work @default.
- W1567475771 sameAs 1567475771 @default.
- W1567475771 citedByCount "1" @default.
- W1567475771 crossrefType "proceedings-article" @default.
- W1567475771 hasAuthorship W1567475771A5015357417 @default.
- W1567475771 hasAuthorship W1567475771A5052847653 @default.
- W1567475771 hasAuthorship W1567475771A5055847035 @default.
- W1567475771 hasConcept C102366305 @default.
- W1567475771 hasConcept C105795698 @default.
- W1567475771 hasConcept C11413529 @default.
- W1567475771 hasConcept C114614502 @default.
- W1567475771 hasConcept C117251300 @default.
- W1567475771 hasConcept C122280245 @default.
- W1567475771 hasConcept C12267149 @default.
- W1567475771 hasConcept C126255220 @default.
- W1567475771 hasConcept C134517425 @default.
- W1567475771 hasConcept C154945302 @default.
- W1567475771 hasConcept C185429906 @default.
- W1567475771 hasConcept C189508267 @default.
- W1567475771 hasConcept C195699287 @default.
- W1567475771 hasConcept C2776502983 @default.
- W1567475771 hasConcept C28826006 @default.
- W1567475771 hasConcept C33923547 @default.
- W1567475771 hasConcept C41008148 @default.
- W1567475771 hasConcept C51432778 @default.
- W1567475771 hasConcept C71134354 @default.
- W1567475771 hasConcept C74193536 @default.
- W1567475771 hasConcept C84894716 @default.
- W1567475771 hasConceptScore W1567475771C102366305 @default.
- W1567475771 hasConceptScore W1567475771C105795698 @default.
- W1567475771 hasConceptScore W1567475771C11413529 @default.
- W1567475771 hasConceptScore W1567475771C114614502 @default.
- W1567475771 hasConceptScore W1567475771C117251300 @default.
- W1567475771 hasConceptScore W1567475771C122280245 @default.
- W1567475771 hasConceptScore W1567475771C12267149 @default.
- W1567475771 hasConceptScore W1567475771C126255220 @default.
- W1567475771 hasConceptScore W1567475771C134517425 @default.
- W1567475771 hasConceptScore W1567475771C154945302 @default.
- W1567475771 hasConceptScore W1567475771C185429906 @default.
- W1567475771 hasConceptScore W1567475771C189508267 @default.
- W1567475771 hasConceptScore W1567475771C195699287 @default.
- W1567475771 hasConceptScore W1567475771C2776502983 @default.
- W1567475771 hasConceptScore W1567475771C28826006 @default.
- W1567475771 hasConceptScore W1567475771C33923547 @default.
- W1567475771 hasConceptScore W1567475771C41008148 @default.
- W1567475771 hasConceptScore W1567475771C51432778 @default.
- W1567475771 hasConceptScore W1567475771C71134354 @default.
- W1567475771 hasConceptScore W1567475771C74193536 @default.
- W1567475771 hasConceptScore W1567475771C84894716 @default.
- W1567475771 hasLocation W15674757711 @default.
- W1567475771 hasOpenAccess W1567475771 @default.
- W1567475771 hasPrimaryLocation W15674757711 @default.
- W1567475771 hasRelatedWork W1590754456 @default.
- W1567475771 hasRelatedWork W1604952736 @default.
- W1567475771 hasRelatedWork W1882692136 @default.
- W1567475771 hasRelatedWork W1917576720 @default.
- W1567475771 hasRelatedWork W1933608876 @default.
- W1567475771 hasRelatedWork W1984211209 @default.
- W1567475771 hasRelatedWork W2060848957 @default.
- W1567475771 hasRelatedWork W2074762535 @default.
- W1567475771 hasRelatedWork W2102224802 @default.
- W1567475771 hasRelatedWork W2111496576 @default.
- W1567475771 hasRelatedWork W2165795858 @default.
- W1567475771 hasRelatedWork W2533512912 @default.
- W1567475771 hasRelatedWork W2544721065 @default.
- W1567475771 hasRelatedWork W2548200310 @default.
- W1567475771 hasRelatedWork W2549108349 @default.
- W1567475771 hasRelatedWork W2775769938 @default.