Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567487277> ?p ?o ?g. }
- W1567487277 abstract "Estimating geometry from images is at the core of many computer vision applications, whether it concerns the imaging geometry, the geometry of the scene, or both. Examples include image mosaicking, pose estimation, multi baseline stereo, and structure from motion. All these problems can be modeled probabilistically and translate into well-understood statistical estimation problems, provided the correspondence between measurements in the different images is known. I will show that, if the correspondence is not known, the statistically optimal estimate for the geometry can be obtained using the expectation-maximization (EM) algorithm. In contrast to existing techniques, the EM algorithm avoids the estimation bias associated with computing a single “best” set of correspondences, but rather considers the distribution over all possible correspondences consistent with the data. While the latter computation is intractable in general, I show that it can be approximated well in practice using Markov chain Monte Carlo sampling. As part of this, I have designed an efficient sampler specifically tuned to the correspondence problem. The resulting Monte Carlo EM approach represents the first truly multiview algorithm for geometric estimation with unknown correspondence. This is especially relevant in the structure from motion domain, where the state of the art relies on robust estimation of two or three-view geometric constraints. In addition, I will show that the probabilistic approach I propose allows for a seamless and principled way of integrating prior knowledge, appearance models, and statistical models for occlusion and clutter." @default.
- W1567487277 created "2016-06-24" @default.
- W1567487277 creator A5005247523 @default.
- W1567487277 creator A5066710774 @default.
- W1567487277 creator A5087336025 @default.
- W1567487277 date "2001-01-01" @default.
- W1567487277 modified "2023-09-23" @default.
- W1567487277 title "Monte carlo em for data-association and its applications in computer vision" @default.
- W1567487277 cites W10195015 @default.
- W1567487277 cites W1483307070 @default.
- W1567487277 cites W1485855073 @default.
- W1567487277 cites W1489273657 @default.
- W1567487277 cites W1494582337 @default.
- W1567487277 cites W1499236264 @default.
- W1567487277 cites W1501934398 @default.
- W1567487277 cites W1513117905 @default.
- W1567487277 cites W1519278729 @default.
- W1567487277 cites W1547612193 @default.
- W1567487277 cites W1548836129 @default.
- W1567487277 cites W1549739843 @default.
- W1567487277 cites W1559153676 @default.
- W1567487277 cites W1559536185 @default.
- W1567487277 cites W1568122762 @default.
- W1567487277 cites W1571286754 @default.
- W1567487277 cites W1574098502 @default.
- W1567487277 cites W1575387439 @default.
- W1567487277 cites W1591410750 @default.
- W1567487277 cites W1594957066 @default.
- W1567487277 cites W1596676983 @default.
- W1567487277 cites W1597286183 @default.
- W1567487277 cites W1598123022 @default.
- W1567487277 cites W1602497574 @default.
- W1567487277 cites W1630235098 @default.
- W1567487277 cites W1644054796 @default.
- W1567487277 cites W1646998587 @default.
- W1567487277 cites W1649464328 @default.
- W1567487277 cites W1656165940 @default.
- W1567487277 cites W1663421356 @default.
- W1567487277 cites W1671753154 @default.
- W1567487277 cites W1795816312 @default.
- W1567487277 cites W1813558895 @default.
- W1567487277 cites W1821109219 @default.
- W1567487277 cites W1866294549 @default.
- W1567487277 cites W1943001502 @default.
- W1567487277 cites W1949154667 @default.
- W1567487277 cites W1964242720 @default.
- W1567487277 cites W1965449873 @default.
- W1567487277 cites W1972278541 @default.
- W1567487277 cites W1976311654 @default.
- W1567487277 cites W1980101660 @default.
- W1567487277 cites W1985093013 @default.
- W1567487277 cites W1990283121 @default.
- W1567487277 cites W1992244824 @default.
- W1567487277 cites W1993005287 @default.
- W1567487277 cites W2000048778 @default.
- W1567487277 cites W2002341681 @default.
- W1567487277 cites W2003309277 @default.
- W1567487277 cites W2007567313 @default.
- W1567487277 cites W2011833091 @default.
- W1567487277 cites W2013469532 @default.
- W1567487277 cites W2014425592 @default.
- W1567487277 cites W2014898029 @default.
- W1567487277 cites W2025934818 @default.
- W1567487277 cites W2027218073 @default.
- W1567487277 cites W2028117597 @default.
- W1567487277 cites W2028310195 @default.
- W1567487277 cites W2032167559 @default.
- W1567487277 cites W2033732379 @default.
- W1567487277 cites W2033819227 @default.
- W1567487277 cites W2035143052 @default.
- W1567487277 cites W2037819914 @default.
- W1567487277 cites W2038700228 @default.
- W1567487277 cites W2042092577 @default.
- W1567487277 cites W2044973895 @default.
- W1567487277 cites W2044975964 @default.
- W1567487277 cites W2046097442 @default.
- W1567487277 cites W2049633694 @default.
- W1567487277 cites W2049981393 @default.
- W1567487277 cites W2051719061 @default.
- W1567487277 cites W2053913299 @default.
- W1567487277 cites W2054458431 @default.
- W1567487277 cites W2056760934 @default.
- W1567487277 cites W2057791985 @default.
- W1567487277 cites W2058530070 @default.
- W1567487277 cites W2059278866 @default.
- W1567487277 cites W2060530519 @default.
- W1567487277 cites W2068204893 @default.
- W1567487277 cites W2079007559 @default.
- W1567487277 cites W2079495438 @default.
- W1567487277 cites W2084151718 @default.
- W1567487277 cites W2084831673 @default.
- W1567487277 cites W2085261163 @default.
- W1567487277 cites W2089373496 @default.
- W1567487277 cites W2094740227 @default.
- W1567487277 cites W2096140268 @default.
- W1567487277 cites W2096600681 @default.
- W1567487277 cites W2096840836 @default.
- W1567487277 cites W2097183228 @default.
- W1567487277 cites W2098324167 @default.
- W1567487277 cites W2098979973 @default.