Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567679019> ?p ?o ?g. }
- W1567679019 abstract "Hydropower is the world’s most important renewable electricity source. More than 40% of European hydroelectric energy is produced in Alpine countries. High-head storage hydropower plants (HPP) contribute significantly to peak energy production as well as electricity grid regulation. Future plant management is faced with several challenges concerning modified availability of water resources due to climate change as well as new economic constraints associated with legal, political and electricity market issues. HPP operation results in unsteady water release to the downstream river system. Hydropeaking is the primary factor of flow regime alteration, impacting the river ecosystem. Even when the biological response to hydropeaking is not fully understood, the recently adapted law on water protection prescribes its mitigation in Switzerland. In this research project, a novel integrative approach to model and assess the impact of the operation of a complex hydropower scheme on the downstream river system is developed. It contains (1) a precipitation-runoff model extended for long-term simulations of glacierized Alpine catchment areas, (2) an operation tool for high-head storage HPP, (3) flow regime generation with cost estimation of hydropeaking mitigation measures and (4) a habitat model of reference river morphologies for a target species. The upper Aare River (Hasliaare) in Switzerland is an Alpine stream, affected by hydropeaking from a complex hydropower scheme with several storage volumes and power houses. Since the 1930s, seasonal water transfer from summer to winter and the amplitude and frequency of daily peak discharge have been continuously increased. Furthermore, the dynamic braided river network with various mesohabitats gave way to a mainly monotonous channel. Although diversity of species and biomass of aquatic biota have drastically decreased, the potential of redevelopment remains. Investigations to improve the river morphology and the flow regime are under discussion. The upper Aare River catchment is therefore an appropriate case study for analysis of the interactions between climatic, hydrological, hydraulic, economic as well as ecological parameters. The simulation of runoff in Alpine catchment areas is essential for optimal hydropower exploitation under normal flow conditions, but also for the analysis of flood events. The semi-distributed conceptual modeling approach Routing System contains a reservoir-based precipitation-runoff transformation model (GSM-SOCONT), extended by dynamic glacier simulation tool. Spatial precipitation and temperature distributions are taken into account for simulating the relevant hydrological processes, such as glacier melt, snowpack constitution and melt, soil infiltration and runoff. The model development, calibration and validation are illustrated for the 2005 flood event, where the flood reduction capacity of the HPP is discussed, as well as future long-term runoff estimations. Climate change scenarios, based on a reference climate period, take into account intra-annual temperature and precipitation variations as well as their long-term tendencies. Runoff series of daily resolution are produced by hourly updating of the meteorological, glaciological and hydrological parameters. An almost complete deglacierization of the upper Aare River basin is simulated for the late 21st century. The resulting reduction of glacier melt in summer and earlier snowmelt in spring change the runoff regime from glacio-nival to nival. The implemented heuristic hydropower modeling tool in Routing System allows simulation of the operating mode of complex HPP. Within the case study of the upper Aare River catchment and despite the complexity of the HPP network, the influence of climate change, electricity market issues, plant enhancements as well as hydropeaking constraints is simulated and assessed. Despite the reduction of future runoff, increased flexibility due to new turbine and pumped-storage capacities allows compensation, especially in the case of volatile electricity prices, and could even partially restore the natural flow regime. Several operational and construction measures to reduce hydropeaking are implemented in the model. Resulting flow regimes as well as the related costs are defined. Operational constraints, such as limitation of turbine discharge, increase of residual flow or limited drawdown range, generate relatively high costs compared to their environmental effectiveness. Better ecological and economic response is achieved by construction measures, such as flow deviation systems or compensation basins installed downstream of the power house outflow where the water is temporarily stored and then released to the river by a guided system. The simulated flow regimes are rated by a river specific habitat model for representative morphologies and three life stages of the target species brown trout (Salmo trutta fario). This is based on results from a 2D hydrodynamic model and in situ investigations undertaken in the framework of a joint project of EAWAG. Steady and dynamic indicators quantify fish habitat suitability and allow comparison through economic indices of the implemented mitigation measures. For the Hasliaare River, investments for mitigation of hydropeaking are only justified by morphological improvements. The developed approach is useful for the enhancement of complex storage hydropower schemes regarding mitigation of altered flow regimes. Despite several uncertainties, it allows operators, authorities and researchers to define and rate the impact of HPP operation on the river network, to ecologically and economically assess mitigation measures and thus to address hydropeaking in a straightforward manner." @default.
- W1567679019 created "2016-06-24" @default.
- W1567679019 creator A5045053819 @default.
- W1567679019 date "2012-01-01" @default.
- W1567679019 modified "2023-09-23" @default.
- W1567679019 title "Operation of complex hydropower schemes and its impact on the flow regime in the downstream river system under changing scenarios" @default.
- W1567679019 cites W1493796743 @default.
- W1567679019 cites W1497998390 @default.
- W1567679019 cites W1499381260 @default.
- W1567679019 cites W1544521109 @default.
- W1567679019 cites W1562354368 @default.
- W1567679019 cites W1562715474 @default.
- W1567679019 cites W1571790815 @default.
- W1567679019 cites W1573136214 @default.
- W1567679019 cites W1574148796 @default.
- W1567679019 cites W1578964837 @default.
- W1567679019 cites W1583276246 @default.
- W1567679019 cites W1587527338 @default.
- W1567679019 cites W1592303791 @default.
- W1567679019 cites W1631794911 @default.
- W1567679019 cites W1772282522 @default.
- W1567679019 cites W1786981817 @default.
- W1567679019 cites W1830398330 @default.
- W1567679019 cites W1860093990 @default.
- W1567679019 cites W187919921 @default.
- W1567679019 cites W1907031796 @default.
- W1567679019 cites W1965568221 @default.
- W1567679019 cites W1966354525 @default.
- W1567679019 cites W1972078741 @default.
- W1567679019 cites W1972929883 @default.
- W1567679019 cites W1973662977 @default.
- W1567679019 cites W1975141009 @default.
- W1567679019 cites W1977065154 @default.
- W1567679019 cites W1978463382 @default.
- W1567679019 cites W1978773904 @default.
- W1567679019 cites W1981646498 @default.
- W1567679019 cites W1982901688 @default.
- W1567679019 cites W1986050916 @default.
- W1567679019 cites W1986385443 @default.
- W1567679019 cites W1993195626 @default.
- W1567679019 cites W1993862685 @default.
- W1567679019 cites W1994010229 @default.
- W1567679019 cites W1996210406 @default.
- W1567679019 cites W1997489491 @default.
- W1567679019 cites W1997571554 @default.
- W1567679019 cites W2001833158 @default.
- W1567679019 cites W2002652098 @default.
- W1567679019 cites W2003241794 @default.
- W1567679019 cites W2003282762 @default.
- W1567679019 cites W2003291833 @default.
- W1567679019 cites W2010075926 @default.
- W1567679019 cites W2012316213 @default.
- W1567679019 cites W2013871107 @default.
- W1567679019 cites W2016679938 @default.
- W1567679019 cites W2017382446 @default.
- W1567679019 cites W2017747919 @default.
- W1567679019 cites W2021141951 @default.
- W1567679019 cites W2023727230 @default.
- W1567679019 cites W2024159796 @default.
- W1567679019 cites W2024321822 @default.
- W1567679019 cites W2026869956 @default.
- W1567679019 cites W2028596337 @default.
- W1567679019 cites W2028879569 @default.
- W1567679019 cites W2029885460 @default.
- W1567679019 cites W2029942690 @default.
- W1567679019 cites W2030134440 @default.
- W1567679019 cites W2030639724 @default.
- W1567679019 cites W2033904036 @default.
- W1567679019 cites W2037951271 @default.
- W1567679019 cites W2041579970 @default.
- W1567679019 cites W2042233171 @default.
- W1567679019 cites W2046709798 @default.
- W1567679019 cites W2047852351 @default.
- W1567679019 cites W2048755726 @default.
- W1567679019 cites W2050359585 @default.
- W1567679019 cites W2051332228 @default.
- W1567679019 cites W2052971926 @default.
- W1567679019 cites W2057227736 @default.
- W1567679019 cites W2060835360 @default.
- W1567679019 cites W2062340632 @default.
- W1567679019 cites W2063794916 @default.
- W1567679019 cites W2064184540 @default.
- W1567679019 cites W2064419957 @default.
- W1567679019 cites W2066295726 @default.
- W1567679019 cites W2069396853 @default.
- W1567679019 cites W2070611029 @default.
- W1567679019 cites W2072074214 @default.
- W1567679019 cites W2073799710 @default.
- W1567679019 cites W2074672397 @default.
- W1567679019 cites W2075108083 @default.
- W1567679019 cites W2078084396 @default.
- W1567679019 cites W2078535416 @default.
- W1567679019 cites W2080677541 @default.
- W1567679019 cites W2081654270 @default.
- W1567679019 cites W2082835915 @default.
- W1567679019 cites W2083618346 @default.
- W1567679019 cites W2087125425 @default.
- W1567679019 cites W2089684234 @default.
- W1567679019 cites W2089861951 @default.
- W1567679019 cites W2093233187 @default.