Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567702320> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1567702320 endingPage "333" @default.
- W1567702320 startingPage "333" @default.
- W1567702320 abstract "In many practical situations, classical modelling protocols are either inappropriate or infeasible for the recovery of an estimate of some specific property of an object, such as the protein content of wheat, from available indirect (spectroscopic) measurements. In such situations, some form of calibration-and-prediction (machine learning) is a popular alternative. For a representative set of samples, inexpensive and rapidly available indirect (spectroscopic) encapsulations of the property are recorded for each sample along with an independent laboratory measurement of the value of the specified property. Because many more indirect measurement values are recorded for each sample than the number of samples tested, the resulting system is highly under-determined in the sense of performing the calibration step: the identification of a predictor which can be applied to the indirect measurements of a new sample to predict its value of the property. Various dimension reduction methodologies have been proposed for performing the calibration step, including principal component regression, partial least squares, independent component analysis and neural network analysis. Independently, because of the high accuracy with which near infrared spectra are recorded using computer controlled instrumentation, derivative spectroscopy techniques can be utilised to explore differences in the molecular structure of cereal grains. For the optimisation of the recovery of estimates of the property from the indirect measurements of new samples, two questions are explored in this article; one practical, the other theoretical: (i)~To what extent should preprocessing (such as fourth differentiation) be applied to the indirect measurements before the calibration step is performed? (ii)~Is there an algorithmic advantage in viewing partial least squares as an implementation of simultaneous minimisation? References B. Anderssen, F. de Hoog, and M. Hegland. A stable finite difference ansatz for higher order differentiation of non-exact data. Bull. Austral. Math. Soc., 58(2):223--232, 1998. R. S. Anderssen, E. Carter, B. G. Osborne, and I. J. Wesley. Joint inversion of multi-modal spectroscopic data of wheat flours. Appl. Spectro., 59(7):920--925, JUL 2005. R. S. Anderssen and F. R. de Hoog. Finite-difference methods for the numerical differentiation of non-exact data. Computing, 33(3--4):259--267, 1984. R. S. Anderssen and R. Haraszi. Characterizing and exploiting the rheology of wheat hardness. Euro. Food Res. Tech., 229(1):159--174, MAY 2009. doi:10.1007/s00217-009-1037-9 R. S. Anderssen and M. Hegland. Derivative Spectroscopy---An enhanced role for numerical differentiation. J. Integ. Eqn. Appl., 22(3):355--367, 2010. doi:10.1216/JIE-2010-22-3-355 R. S. Anderssen, B. G. Osborne, and I. J. Wesley. The application of localisation to near infrared calibration and prediction through partial least squares regression. JNIRS, 11(1):39--48, 2003. L. Elden. Partial least-squares vs. Lanczos bidiagonalization---I: analysis of a projection method for multiple regression. Comp. Stats and Data Anal., 46(1):11--31, 2004. doi:10.1016/S0167-9473(03)00138-5 I. E. Frank. Beyond linear least-squares regression. Trac-Trends in Anal. Chem., 6(10):271--275, 1987. I. E. Frank. Intermediate least-squares regression method. Chemo. Intel. Lab. Systems, 1(3):233--242, 1987. G. H. Golub and C. Reinsch. Singular value decomposition and least squares solutions. Numer. Math., 14(5):403--420, 1970. R. Gosselin, D. Rodrigue, and C. Duchesne. A Bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications. Chemo. Intell. Lab. Systems, 100(1):12--21, 2010. doi:10.1016/j.chemolab.2009.09.005 A. Hyvarinen and E. Oja. Independent component analysis: algorithms and applications. Neural Net., 13(4--5):411--430, {} 2000. T. Naes, T. Isaksson, T. Fearn, and T. Davies. A User-Friendly Guide to Multivariate Calibration and Classification. NIR Publications, Chichester, UK, 2002. B. G. Osborne, T. Fearn, and P. H. Hindle. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis. Longman Scientific and Technical, Harlow, UK, 1993. McGraw-Hill Series in Higher Mathematics. I. J. Wesley, O. Larroque, B. G. Osborne, N. Azudin, H. Allen, and J. H. Skerritt. Measurement of gliadin and glutenin content of flour by NIR spectroscopy. J. Cereal Sci., 34(2):125--133, 2001. P. R. Wiley, G. J. Tanner, P. M. Chandler, and R. S. Anderssen. Molecular classification of barley mutants using derivative spectroscopic analysis of NIR spectra of their wholemeal flours. J. Agri. Food Chem, (2), 2009." @default.
- W1567702320 created "2016-06-24" @default.
- W1567702320 creator A5041700832 @default.
- W1567702320 creator A5063168595 @default.
- W1567702320 creator A5065950971 @default.
- W1567702320 date "2011-07-10" @default.
- W1567702320 modified "2023-09-26" @default.
- W1567702320 title "Information recovery from near infrared data" @default.
- W1567702320 cites W1480175919 @default.
- W1567702320 cites W1882555838 @default.
- W1567702320 cites W1975351466 @default.
- W1567702320 cites W1975582223 @default.
- W1567702320 cites W1975919222 @default.
- W1567702320 cites W1976416877 @default.
- W1567702320 cites W2013005723 @default.
- W1567702320 cites W2046708240 @default.
- W1567702320 cites W2065087293 @default.
- W1567702320 cites W2075667049 @default.
- W1567702320 cites W2078841894 @default.
- W1567702320 cites W2081453170 @default.
- W1567702320 cites W2087372295 @default.
- W1567702320 cites W2104606180 @default.
- W1567702320 cites W2123649031 @default.
- W1567702320 cites W2398667566 @default.
- W1567702320 doi "https://doi.org/10.21914/anziamj.v52i0.3909" @default.
- W1567702320 hasPublicationYear "2011" @default.
- W1567702320 type Work @default.
- W1567702320 sameAs 1567702320 @default.
- W1567702320 citedByCount "3" @default.
- W1567702320 countsByYear W15677023202012 @default.
- W1567702320 countsByYear W15677023202014 @default.
- W1567702320 crossrefType "journal-article" @default.
- W1567702320 hasAuthorship W1567702320A5041700832 @default.
- W1567702320 hasAuthorship W1567702320A5063168595 @default.
- W1567702320 hasAuthorship W1567702320A5065950971 @default.
- W1567702320 hasBestOaLocation W15677023201 @default.
- W1567702320 hasConcept C105795698 @default.
- W1567702320 hasConcept C111472728 @default.
- W1567702320 hasConcept C11413529 @default.
- W1567702320 hasConcept C119857082 @default.
- W1567702320 hasConcept C124101348 @default.
- W1567702320 hasConcept C138885662 @default.
- W1567702320 hasConcept C153180895 @default.
- W1567702320 hasConcept C154945302 @default.
- W1567702320 hasConcept C165838908 @default.
- W1567702320 hasConcept C185592680 @default.
- W1567702320 hasConcept C186060115 @default.
- W1567702320 hasConcept C189950617 @default.
- W1567702320 hasConcept C198531522 @default.
- W1567702320 hasConcept C22354355 @default.
- W1567702320 hasConcept C27438332 @default.
- W1567702320 hasConcept C33923547 @default.
- W1567702320 hasConcept C34736171 @default.
- W1567702320 hasConcept C41008148 @default.
- W1567702320 hasConcept C43617362 @default.
- W1567702320 hasConcept C86803240 @default.
- W1567702320 hasConceptScore W1567702320C105795698 @default.
- W1567702320 hasConceptScore W1567702320C111472728 @default.
- W1567702320 hasConceptScore W1567702320C11413529 @default.
- W1567702320 hasConceptScore W1567702320C119857082 @default.
- W1567702320 hasConceptScore W1567702320C124101348 @default.
- W1567702320 hasConceptScore W1567702320C138885662 @default.
- W1567702320 hasConceptScore W1567702320C153180895 @default.
- W1567702320 hasConceptScore W1567702320C154945302 @default.
- W1567702320 hasConceptScore W1567702320C165838908 @default.
- W1567702320 hasConceptScore W1567702320C185592680 @default.
- W1567702320 hasConceptScore W1567702320C186060115 @default.
- W1567702320 hasConceptScore W1567702320C189950617 @default.
- W1567702320 hasConceptScore W1567702320C198531522 @default.
- W1567702320 hasConceptScore W1567702320C22354355 @default.
- W1567702320 hasConceptScore W1567702320C27438332 @default.
- W1567702320 hasConceptScore W1567702320C33923547 @default.
- W1567702320 hasConceptScore W1567702320C34736171 @default.
- W1567702320 hasConceptScore W1567702320C41008148 @default.
- W1567702320 hasConceptScore W1567702320C43617362 @default.
- W1567702320 hasConceptScore W1567702320C86803240 @default.
- W1567702320 hasLocation W15677023201 @default.
- W1567702320 hasOpenAccess W1567702320 @default.
- W1567702320 hasPrimaryLocation W15677023201 @default.
- W1567702320 hasRelatedWork W1982771086 @default.
- W1567702320 hasRelatedWork W1984594863 @default.
- W1567702320 hasRelatedWork W2008176695 @default.
- W1567702320 hasRelatedWork W2085553065 @default.
- W1567702320 hasRelatedWork W2147817912 @default.
- W1567702320 hasRelatedWork W2380927352 @default.
- W1567702320 hasRelatedWork W3178621026 @default.
- W1567702320 hasRelatedWork W3204737340 @default.
- W1567702320 hasRelatedWork W4211209597 @default.
- W1567702320 hasRelatedWork W2954124481 @default.
- W1567702320 hasVolume "51" @default.
- W1567702320 isParatext "false" @default.
- W1567702320 isRetracted "false" @default.
- W1567702320 magId "1567702320" @default.
- W1567702320 workType "article" @default.