Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567763844> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W1567763844 endingPage "4520" @default.
- W1567763844 startingPage "4467" @default.
- W1567763844 abstract "We examine the possible extensions to the Lipschitzian setting of the classical result on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript 1> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>C^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-convergence: first (approximation), if a sequence <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis f Subscript n Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(f_n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of functions of class <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript 1> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>C^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R Superscript upper N> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {R}^N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> converges uniformly to a function <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of class <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript 1> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>C^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then the gradient of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a limit of gradients of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f Subscript n> <mml:semantics> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>f_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the sense that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g r a p h left-parenthesis nabla f right-parenthesis subset-of limit inf g r a p h left-parenthesis nabla f Subscript n Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>graph</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>∇<!-- ∇ --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:munder> <mml:mo movablelimits=true form=prefix>lim inf</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:munder> <mml:mi>graph</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>∇<!-- ∇ --></mml:mi> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>operatorname {graph}(nabla f)subset liminf _{nto +infty } operatorname {graph}(nabla f_n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; second (regularization), the functions <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis f Subscript n Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(f_n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be chosen to be of class <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript normal infinity> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>C^{infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript 1> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>C^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-converging to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the sense that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=limit Underscript n right-arrow plus normal infinity Endscripts double-vertical-bar f Subscript n Baseline minus f double-vertical-bar Subscript normal infinity Baseline plus double-vertical-bar nabla f Subscript n Baseline minus nabla f double-vertical-bar Subscript normal infinity Baseline equals 0> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo movablelimits=true form=prefix>lim</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:munder> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:mi>f</mml:mi> <mml:msub> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mi mathvariant=normal>∇<!-- ∇ --></mml:mi> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant=normal>∇<!-- ∇ --></mml:mi> <mml:mi>f</mml:mi> <mml:msub> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>lim _{nto +infty } |f_n-f|_{infty }+ |nabla f_n-nabla f|_{infty }=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In other words, the space of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript normal infinity> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>C^{infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> functions is dense in the space of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript 1> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>C^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> functions endowed with the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript 1> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:annotation encoding=application/x-tex>C^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> pseudo-norm. We first deepen the properties of Warga’s counterexample (1981) for the extension of the approximation part to the Lipschitzian setting. This part cannot be extended, even if one restricts the approximation schemes to the classical convolution and the Lasry-Lions regularization. We thus make more precise various results in the literature on the convergence of subdifferentials. We then show that the regularization part can be extended to the Lipschitzian setting, namely if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f colon double-struck upper R Superscript upper N Baseline right-arrow double-struck upper R> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>f:mathbb {R}^N rightarrow {mathbb R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a locally Lipschitz function, we build a sequence of smooth functions <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis f Subscript n Baseline right-parenthesis Subscript n element-of double-struck upper N> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>N</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>(f_n)_{n in mathbb {N}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <disp-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=StartLayout 1st Row 1st Column Blank 2nd Column a m p semicolon 3rd Column a m p semicolon limit Underscript n right-arrow plus normal infinity Endscripts double-vertical-bar f Subscript n Baseline minus f double-vertical-bar Subscript normal infinity Baseline equals 0 comma 2nd Row 1st Column Blank 2nd Column a m p semicolon 3rd Column a m p semicolon limit Underscript n right-arrow plus normal infinity Endscripts d Subscript upper H a u s Baseline left-parenthesis g r a p h left-parenthesis nabla f Subscript n Baseline right-parenthesis comma g r a p h left-parenthesis partial-differential f right-parenthesis right-parenthesis equals 0 period EndLayout> <mml:semantics> <mml:mtable columnalign=right center left rowspacing=3pt columnspacing=0 thickmathspace side=left displaystyle=true> <mml:mtr> <mml:mtd /> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:munder> <mml:mo movablelimits=true form=prefix>lim</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:munder> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:mi>f</mml:mi> <mml:msub> <mml:mo fence=false stretchy=false>‖<!-- ‖ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd /> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> </mml:mtd> <mml:mtd> <mml:mi>a</mml:mi> <mml:mi>m</mml:mi> <mml:mi>p</mml:mi> <mml:mo>;</mml:mo> <mml:munder> <mml:mo movablelimits=true form=prefix>lim</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:munder> <mml:msub> <mml:mi>d</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>H</mml:mi> <mml:mi>a</mml:mi> <mml:mi>u</mml:mi> <mml:mi>s</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>graph</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>∇<!-- ∇ --></mml:mi> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo>,</mml:mo> <mml:mi>graph</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>∂<!-- ∂ --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0.</mml:mn> </mml:mtd> </mml:mtr> </mml:mtable> <mml:annotation encoding=application/x-tex>begin{eqnarray*} &&lim _{nto +infty } |f_n-f|_{infty }=0, &&lim _{nto +infty } d_{Haus}(operatorname {graph}(nabla f_n), operatorname {graph}(partial f))=0. end{eqnarray*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> In other words, the space of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper C Superscript normal infinity> <mml:semantics> <mml:msup> <mml:mi>C</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>C^{infty }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> functions is dense in the space of locally Lipschitz functions endowed with an appropriate Lipschitz pseudo-distance. Up to now, Rockafellar and Wets (1998) have shown that the convolution procedure permits us to have the equality <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=limit sup g r a p h left-parenthesis nabla f Subscript n Baseline right-parenthesis equals g r a p h left-parenthesis partial-differential f right-parenthesis> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo movablelimits=true form=prefix>lim sup</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:munder> <mml:mi>graph</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>∇<!-- ∇ --></mml:mi> <mml:msub> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>graph</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi mathvariant=normal>∂<!-- ∂ --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>limsup _{nto +infty } operatorname {graph}(nabla f_n) =operatorname {graph}(partial f)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which cannot provide the exactness of our result. As a consequence, we obtain a similar result on the regularization of epi-Lipschitz sets. With both functional and set parts, we improve previous results in the literature on the regularization of functions and sets." @default.
- W1567763844 created "2016-06-24" @default.
- W1567763844 creator A5000713548 @default.
- W1567763844 creator A5071460705 @default.
- W1567763844 date "2006-05-09" @default.
- W1567763844 modified "2023-09-25" @default.
- W1567763844 title "Approximation and regularization of Lipschitz functions: Convergence of the gradients" @default.
- W1567763844 cites W1511503348 @default.
- W1567763844 cites W1552025512 @default.
- W1567763844 cites W1573659356 @default.
- W1567763844 cites W1608145022 @default.
- W1567763844 cites W1974794220 @default.
- W1567763844 cites W1978209239 @default.
- W1567763844 cites W2015386597 @default.
- W1567763844 cites W2045843884 @default.
- W1567763844 cites W2045947709 @default.
- W1567763844 cites W2048564717 @default.
- W1567763844 cites W2067032400 @default.
- W1567763844 cites W2070470590 @default.
- W1567763844 cites W2091829906 @default.
- W1567763844 cites W2136361262 @default.
- W1567763844 cites W2139160710 @default.
- W1567763844 cites W4205377395 @default.
- W1567763844 cites W4235022435 @default.
- W1567763844 cites W4237476430 @default.
- W1567763844 cites W4239970194 @default.
- W1567763844 cites W4249513058 @default.
- W1567763844 cites W53137934 @default.
- W1567763844 cites W2039816150 @default.
- W1567763844 doi "https://doi.org/10.1090/s0002-9947-06-04103-1" @default.
- W1567763844 hasPublicationYear "2006" @default.
- W1567763844 type Work @default.
- W1567763844 sameAs 1567763844 @default.
- W1567763844 citedByCount "34" @default.
- W1567763844 countsByYear W15677638442012 @default.
- W1567763844 countsByYear W15677638442014 @default.
- W1567763844 countsByYear W15677638442015 @default.
- W1567763844 countsByYear W15677638442016 @default.
- W1567763844 countsByYear W15677638442017 @default.
- W1567763844 countsByYear W15677638442018 @default.
- W1567763844 countsByYear W15677638442019 @default.
- W1567763844 countsByYear W15677638442020 @default.
- W1567763844 countsByYear W15677638442021 @default.
- W1567763844 countsByYear W15677638442023 @default.
- W1567763844 crossrefType "journal-article" @default.
- W1567763844 hasAuthorship W1567763844A5000713548 @default.
- W1567763844 hasAuthorship W1567763844A5071460705 @default.
- W1567763844 hasBestOaLocation W15677638441 @default.
- W1567763844 hasConcept C134306372 @default.
- W1567763844 hasConcept C13474197 @default.
- W1567763844 hasConcept C154945302 @default.
- W1567763844 hasConcept C162324750 @default.
- W1567763844 hasConcept C22324862 @default.
- W1567763844 hasConcept C2776135515 @default.
- W1567763844 hasConcept C2777303404 @default.
- W1567763844 hasConcept C28826006 @default.
- W1567763844 hasConcept C33923547 @default.
- W1567763844 hasConcept C41008148 @default.
- W1567763844 hasConcept C50522688 @default.
- W1567763844 hasConceptScore W1567763844C134306372 @default.
- W1567763844 hasConceptScore W1567763844C13474197 @default.
- W1567763844 hasConceptScore W1567763844C154945302 @default.
- W1567763844 hasConceptScore W1567763844C162324750 @default.
- W1567763844 hasConceptScore W1567763844C22324862 @default.
- W1567763844 hasConceptScore W1567763844C2776135515 @default.
- W1567763844 hasConceptScore W1567763844C2777303404 @default.
- W1567763844 hasConceptScore W1567763844C28826006 @default.
- W1567763844 hasConceptScore W1567763844C33923547 @default.
- W1567763844 hasConceptScore W1567763844C41008148 @default.
- W1567763844 hasConceptScore W1567763844C50522688 @default.
- W1567763844 hasIssue "10" @default.
- W1567763844 hasLocation W15677638441 @default.
- W1567763844 hasLocation W15677638442 @default.
- W1567763844 hasLocation W15677638443 @default.
- W1567763844 hasLocation W15677638444 @default.
- W1567763844 hasLocation W15677638445 @default.
- W1567763844 hasOpenAccess W1567763844 @default.
- W1567763844 hasPrimaryLocation W15677638441 @default.
- W1567763844 hasRelatedWork W1980142525 @default.
- W1567763844 hasRelatedWork W1988404357 @default.
- W1567763844 hasRelatedWork W2055993960 @default.
- W1567763844 hasRelatedWork W2071871835 @default.
- W1567763844 hasRelatedWork W2083899393 @default.
- W1567763844 hasRelatedWork W2110693695 @default.
- W1567763844 hasRelatedWork W2999232206 @default.
- W1567763844 hasRelatedWork W4230778563 @default.
- W1567763844 hasRelatedWork W4248060259 @default.
- W1567763844 hasRelatedWork W960860267 @default.
- W1567763844 hasVolume "358" @default.
- W1567763844 isParatext "false" @default.
- W1567763844 isRetracted "false" @default.
- W1567763844 magId "1567763844" @default.
- W1567763844 workType "article" @default.