Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567875894> ?p ?o ?g. }
- W1567875894 abstract "The geotechnical engineering properties of soil exhibit varied and uncertain behaviour due to the complex and imprecise physical processes associated with the formation of these materials (Jaksa, 1995). This is in contrast to most other civil engineering materials, such as steel, concrete and timber, which exhibit far greater homogeneity and isotropy. In order to cope with the complexity of geotechnical behaviour, and the spatial variability of these materials, traditional forms of engineering design models are justifiably simplified. Moreover, geotechnical engineers face a great amount of uncertainties. Some sources of uncertainty are inherent soil variability, loading effects, time effects, construction effects, human error, and errors in soil boring, sampling, in-situ and laboratory testing, and characterization of the shear strength and stiffness of soils. Although developing an analytical or empirical model is feasible in some simplified situations, most manufacturing processes are complex, and therefore, models that are less general, more practical, and less expensive than the analytical models are of interest. An important advantage of using Artificial Neural Network (ANN) over regression in process modeling is its capacity in dealing with multiple outputs or responses while each regression model is able to deal with only one response. Another major advantage for developing NN process models is that they do not depend on simplified assumptions such as linear behavior or production heuristics. Neural networks possess a number of attractive properties for modeling a complex mechanical behavior or a system: universal function approximation capability, resistance to noisy or missing data, accommodation of multiple nonlinear variables for unknown interactions, and good generalization capability. Since the early 1990s, ANN has been increasingly employed as an effective tool in geotechnical engineering, including: constitutive modelling (Agrawal et al., 1994; Gribb & Gribb, 1994; Penumadu et al., 1994; Ellis et al., 1995; Millar & Calderbank, 1995; Ghaboussi & Sidarta 1998; Zhu et al., 1998; Sidarta & Ghaboussi, 1998; Najjar & Ali, 1999; Penumadu & Zhao, 1999); geo-material properities (Goh, 1995; Ellis et al., 1995; Najjar et al., 1996; Najjar and Basheer, 1996; Romero & Pamukcu, 1996; Ozer et al., 2008; Park et al., 2009; Park & Kim, 2010; Park & Lee, 2010; Bearing capacity of pile (Chan et al., 1995; Goh, 1996; Bea et al., 1999; Goh et al., 2005; Teh et al., 1997; Lee & Lee, 1996; Abu-Kiefa, 1998; Nawari et al., 1999; Das & Basudhar, 2006, Park & Cho, 2010); slope stability (Ni et al., 1995; Neaupane and Achet, 2004; Ferentinou & Sakellariou, 2007; Zhao, 2007; Cho, 2009); liquefaction (Agrawal" @default.
- W1567875894 created "2016-06-24" @default.
- W1567875894 creator A5041877158 @default.
- W1567875894 date "2011-04-11" @default.
- W1567875894 modified "2023-10-02" @default.
- W1567875894 title "Study for Application of Artificial Neural Networks in Geotechnical Problems" @default.
- W1567875894 cites W112681900 @default.
- W1567875894 cites W1525481129 @default.
- W1567875894 cites W1587662141 @default.
- W1567875894 cites W1825077972 @default.
- W1567875894 cites W1927628970 @default.
- W1567875894 cites W1931006721 @default.
- W1567875894 cites W1963770203 @default.
- W1567875894 cites W1972550919 @default.
- W1567875894 cites W1975048675 @default.
- W1567875894 cites W1977168277 @default.
- W1567875894 cites W1980199530 @default.
- W1567875894 cites W1992883747 @default.
- W1567875894 cites W1993683767 @default.
- W1567875894 cites W1994465193 @default.
- W1567875894 cites W1995500411 @default.
- W1567875894 cites W1995715026 @default.
- W1567875894 cites W2004320657 @default.
- W1567875894 cites W2005350554 @default.
- W1567875894 cites W2011909934 @default.
- W1567875894 cites W2014891611 @default.
- W1567875894 cites W2015071534 @default.
- W1567875894 cites W2016225525 @default.
- W1567875894 cites W2018834426 @default.
- W1567875894 cites W2020738457 @default.
- W1567875894 cites W2031833019 @default.
- W1567875894 cites W2036093555 @default.
- W1567875894 cites W2041452796 @default.
- W1567875894 cites W2044455452 @default.
- W1567875894 cites W2045742817 @default.
- W1567875894 cites W2051835934 @default.
- W1567875894 cites W2058224488 @default.
- W1567875894 cites W2058372961 @default.
- W1567875894 cites W2067130442 @default.
- W1567875894 cites W2068229263 @default.
- W1567875894 cites W2070528208 @default.
- W1567875894 cites W2071487571 @default.
- W1567875894 cites W2075840293 @default.
- W1567875894 cites W2078015106 @default.
- W1567875894 cites W2082362569 @default.
- W1567875894 cites W2083711477 @default.
- W1567875894 cites W2089559182 @default.
- W1567875894 cites W2091261318 @default.
- W1567875894 cites W2101066084 @default.
- W1567875894 cites W2102771921 @default.
- W1567875894 cites W2103496339 @default.
- W1567875894 cites W2107093743 @default.
- W1567875894 cites W2109779438 @default.
- W1567875894 cites W2111051539 @default.
- W1567875894 cites W2112510034 @default.
- W1567875894 cites W2133578162 @default.
- W1567875894 cites W2160829579 @default.
- W1567875894 cites W2170400238 @default.
- W1567875894 cites W2171409491 @default.
- W1567875894 cites W2264585998 @default.
- W1567875894 cites W2276806373 @default.
- W1567875894 cites W2294524996 @default.
- W1567875894 cites W2336362780 @default.
- W1567875894 cites W2339066634 @default.
- W1567875894 cites W2591557003 @default.
- W1567875894 cites W2725718047 @default.
- W1567875894 cites W2742946228 @default.
- W1567875894 cites W2904250082 @default.
- W1567875894 cites W2911546748 @default.
- W1567875894 cites W2973774984 @default.
- W1567875894 cites W3023540311 @default.
- W1567875894 cites W430418080 @default.
- W1567875894 cites W2094999225 @default.
- W1567875894 cites W2513525630 @default.
- W1567875894 doi "https://doi.org/10.5772/15011" @default.
- W1567875894 hasPublicationYear "2011" @default.
- W1567875894 type Work @default.
- W1567875894 sameAs 1567875894 @default.
- W1567875894 citedByCount "5" @default.
- W1567875894 countsByYear W15678758942014 @default.
- W1567875894 countsByYear W15678758942015 @default.
- W1567875894 countsByYear W15678758942018 @default.
- W1567875894 crossrefType "book-chapter" @default.
- W1567875894 hasAuthorship W1567875894A5041877158 @default.
- W1567875894 hasBestOaLocation W15678758941 @default.
- W1567875894 hasConcept C127313418 @default.
- W1567875894 hasConcept C127413603 @default.
- W1567875894 hasConcept C147176958 @default.
- W1567875894 hasConcept C154945302 @default.
- W1567875894 hasConcept C187320778 @default.
- W1567875894 hasConcept C41008148 @default.
- W1567875894 hasConcept C50644808 @default.
- W1567875894 hasConceptScore W1567875894C127313418 @default.
- W1567875894 hasConceptScore W1567875894C127413603 @default.
- W1567875894 hasConceptScore W1567875894C147176958 @default.
- W1567875894 hasConceptScore W1567875894C154945302 @default.
- W1567875894 hasConceptScore W1567875894C187320778 @default.
- W1567875894 hasConceptScore W1567875894C41008148 @default.
- W1567875894 hasConceptScore W1567875894C50644808 @default.
- W1567875894 hasLocation W15678758941 @default.