Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567876833> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1567876833 endingPage "284" @default.
- W1567876833 startingPage "273" @default.
- W1567876833 abstract "We generalise the problem of inverse reinforcement learning to multiple tasks, from multiple demonstrations. Each one may represent one expert trying to solve a different task, or as different experts trying to solve the same task. Our main contribution is to formalise the problem as statistical preference elicitation, via a number of structured priors, whose form captures our biases about the relatedness of different tasks or expert policies. In doing so, we introduce a prior on policy optimality, which is more natural to specify. We show that our framework allows us not only to learn to efficiently from multiple experts but to also effectively differentiate between the goals of each. Possible applications include analysing the intrinsic motivations of subjects in behavioural experiments and learning from multiple teachers." @default.
- W1567876833 created "2016-06-24" @default.
- W1567876833 creator A5017471254 @default.
- W1567876833 creator A5081442637 @default.
- W1567876833 date "2012-01-01" @default.
- W1567876833 modified "2023-10-10" @default.
- W1567876833 title "Bayesian Multitask Inverse Reinforcement Learning" @default.
- W1567876833 cites W1561788187 @default.
- W1567876833 cites W1846353404 @default.
- W1567876833 cites W1965520710 @default.
- W1567876833 cites W1999874108 @default.
- W1567876833 cites W2001272401 @default.
- W1567876833 cites W2057565703 @default.
- W1567876833 cites W2124394479 @default.
- W1567876833 cites W2135043890 @default.
- W1567876833 cites W2169743339 @default.
- W1567876833 cites W4249214388 @default.
- W1567876833 doi "https://doi.org/10.1007/978-3-642-29946-9_27" @default.
- W1567876833 hasPublicationYear "2012" @default.
- W1567876833 type Work @default.
- W1567876833 sameAs 1567876833 @default.
- W1567876833 citedByCount "46" @default.
- W1567876833 countsByYear W15678768332012 @default.
- W1567876833 countsByYear W15678768332013 @default.
- W1567876833 countsByYear W15678768332014 @default.
- W1567876833 countsByYear W15678768332015 @default.
- W1567876833 countsByYear W15678768332016 @default.
- W1567876833 countsByYear W15678768332017 @default.
- W1567876833 countsByYear W15678768332018 @default.
- W1567876833 countsByYear W15678768332019 @default.
- W1567876833 countsByYear W15678768332020 @default.
- W1567876833 countsByYear W15678768332021 @default.
- W1567876833 countsByYear W15678768332022 @default.
- W1567876833 countsByYear W15678768332023 @default.
- W1567876833 crossrefType "book-chapter" @default.
- W1567876833 hasAuthorship W1567876833A5017471254 @default.
- W1567876833 hasAuthorship W1567876833A5081442637 @default.
- W1567876833 hasBestOaLocation W15678768332 @default.
- W1567876833 hasConcept C105795698 @default.
- W1567876833 hasConcept C107673813 @default.
- W1567876833 hasConcept C119857082 @default.
- W1567876833 hasConcept C127413603 @default.
- W1567876833 hasConcept C154945302 @default.
- W1567876833 hasConcept C177769412 @default.
- W1567876833 hasConcept C201995342 @default.
- W1567876833 hasConcept C2780451532 @default.
- W1567876833 hasConcept C2781249084 @default.
- W1567876833 hasConcept C33923547 @default.
- W1567876833 hasConcept C41008148 @default.
- W1567876833 hasConcept C97541855 @default.
- W1567876833 hasConceptScore W1567876833C105795698 @default.
- W1567876833 hasConceptScore W1567876833C107673813 @default.
- W1567876833 hasConceptScore W1567876833C119857082 @default.
- W1567876833 hasConceptScore W1567876833C127413603 @default.
- W1567876833 hasConceptScore W1567876833C154945302 @default.
- W1567876833 hasConceptScore W1567876833C177769412 @default.
- W1567876833 hasConceptScore W1567876833C201995342 @default.
- W1567876833 hasConceptScore W1567876833C2780451532 @default.
- W1567876833 hasConceptScore W1567876833C2781249084 @default.
- W1567876833 hasConceptScore W1567876833C33923547 @default.
- W1567876833 hasConceptScore W1567876833C41008148 @default.
- W1567876833 hasConceptScore W1567876833C97541855 @default.
- W1567876833 hasLocation W15678768331 @default.
- W1567876833 hasLocation W15678768332 @default.
- W1567876833 hasLocation W15678768333 @default.
- W1567876833 hasLocation W15678768334 @default.
- W1567876833 hasLocation W15678768335 @default.
- W1567876833 hasOpenAccess W1567876833 @default.
- W1567876833 hasPrimaryLocation W15678768331 @default.
- W1567876833 hasRelatedWork W1554232575 @default.
- W1567876833 hasRelatedWork W1596778849 @default.
- W1567876833 hasRelatedWork W2143042284 @default.
- W1567876833 hasRelatedWork W2158232074 @default.
- W1567876833 hasRelatedWork W2182903468 @default.
- W1567876833 hasRelatedWork W3022038857 @default.
- W1567876833 hasRelatedWork W3122543654 @default.
- W1567876833 hasRelatedWork W3205395307 @default.
- W1567876833 hasRelatedWork W4287626175 @default.
- W1567876833 hasRelatedWork W4319083788 @default.
- W1567876833 isParatext "false" @default.
- W1567876833 isRetracted "false" @default.
- W1567876833 magId "1567876833" @default.
- W1567876833 workType "book-chapter" @default.