Matches in SemOpenAlex for { <https://semopenalex.org/work/W156793992> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W156793992 abstract "Randomized Intensity Estimates for Transformed Poisson Processes Introduction to the problem Suppose N is a stationary Poisson process on the line with intensity A, observed from time 0 to time T. The transformed process, Af, given by Mit) := N(t/), is a Poisson process with intensity 1. M may equivalently be specified by prescribing that N has a point at t iff. M has a point at t X A. It was shown in [1] that if A is estimated by maximum likelihood, the estimated trans- formed process Mit) behavior. := N(t/) is not a Poisson process, but instead exhibits self-correcting That is, the conditional intensity A„(t) of M is less than 1 when Mit) > t (i.e. when there have been more points than expected), and is greater than 1 when Mit) < t (when there have been fewer than expected). [1] also shows by simulations that, for small samples, this difference between M and a Poisson process can be rather significant. The question addressed here is: can this problem be remedied somehow? Is there some other way to estimate A, so that M will closer approximate the standard Poisson process? One naive attempt may be to multiply the estimate A by some factor. No such procedure can be very effective. The main problem is that for a Poisson process, the number of points in the interval [0,T] may be quite different from its expected value, A X T. But when A is estimated by MLE, the transformed process M is guaranteed to contain NiT) points in a region of size NiT). Multiplying A by some factor simply forces NiT) to be that factor of the size of the transformed region, and does not allow the ratio of the number of points to the size of the transformed region to vary randomly in the way that the ratio N(T)/T varies for the standard Poisson process. Randomized Bayes estimates Another approach is to let the estimate A be randomized. That is, conditional on the observation of the point process N on [0, T], generate a random variable A which may depend on TV. One way to do this involves a Bayesian approach. and for x in Place a uniform prior on R for A, let P(A = xN(T) = i) be equal to the posterior probability P(A = xN = It works out then that J P(N o = zX = y)dy i)." @default.
- W156793992 created "2016-06-24" @default.
- W156793992 creator A5046196418 @default.
- W156793992 date "2011-10-25" @default.
- W156793992 modified "2023-09-27" @default.
- W156793992 title "Randomized Intensity Estimates for Transformed Poisson Processes" @default.
- W156793992 hasPublicationYear "2011" @default.
- W156793992 type Work @default.
- W156793992 sameAs 156793992 @default.
- W156793992 citedByCount "0" @default.
- W156793992 crossrefType "journal-article" @default.
- W156793992 hasAuthorship W156793992A5046196418 @default.
- W156793992 hasConcept C100906024 @default.
- W156793992 hasConcept C105795698 @default.
- W156793992 hasConcept C114614502 @default.
- W156793992 hasConcept C121332964 @default.
- W156793992 hasConcept C133338972 @default.
- W156793992 hasConcept C144024400 @default.
- W156793992 hasConcept C149923435 @default.
- W156793992 hasConcept C155051063 @default.
- W156793992 hasConcept C166144826 @default.
- W156793992 hasConcept C16757284 @default.
- W156793992 hasConcept C2908647359 @default.
- W156793992 hasConcept C33923547 @default.
- W156793992 hasConcept C62520636 @default.
- W156793992 hasConcept C73269764 @default.
- W156793992 hasConcept C88871306 @default.
- W156793992 hasConcept C93038891 @default.
- W156793992 hasConceptScore W156793992C100906024 @default.
- W156793992 hasConceptScore W156793992C105795698 @default.
- W156793992 hasConceptScore W156793992C114614502 @default.
- W156793992 hasConceptScore W156793992C121332964 @default.
- W156793992 hasConceptScore W156793992C133338972 @default.
- W156793992 hasConceptScore W156793992C144024400 @default.
- W156793992 hasConceptScore W156793992C149923435 @default.
- W156793992 hasConceptScore W156793992C155051063 @default.
- W156793992 hasConceptScore W156793992C166144826 @default.
- W156793992 hasConceptScore W156793992C16757284 @default.
- W156793992 hasConceptScore W156793992C2908647359 @default.
- W156793992 hasConceptScore W156793992C33923547 @default.
- W156793992 hasConceptScore W156793992C62520636 @default.
- W156793992 hasConceptScore W156793992C73269764 @default.
- W156793992 hasConceptScore W156793992C88871306 @default.
- W156793992 hasConceptScore W156793992C93038891 @default.
- W156793992 hasLocation W1567939921 @default.
- W156793992 hasOpenAccess W156793992 @default.
- W156793992 hasPrimaryLocation W1567939921 @default.
- W156793992 hasRelatedWork W1487354764 @default.
- W156793992 hasRelatedWork W1530600638 @default.
- W156793992 hasRelatedWork W1970040279 @default.
- W156793992 hasRelatedWork W1976146785 @default.
- W156793992 hasRelatedWork W1976197351 @default.
- W156793992 hasRelatedWork W1985588845 @default.
- W156793992 hasRelatedWork W2021120382 @default.
- W156793992 hasRelatedWork W2039160618 @default.
- W156793992 hasRelatedWork W2041719266 @default.
- W156793992 hasRelatedWork W2063152685 @default.
- W156793992 hasRelatedWork W2074061049 @default.
- W156793992 hasRelatedWork W2092304273 @default.
- W156793992 hasRelatedWork W2329876347 @default.
- W156793992 hasRelatedWork W2798855188 @default.
- W156793992 hasRelatedWork W2944274336 @default.
- W156793992 hasRelatedWork W2950432074 @default.
- W156793992 hasRelatedWork W3103114174 @default.
- W156793992 hasRelatedWork W2022780221 @default.
- W156793992 hasRelatedWork W3143939980 @default.
- W156793992 hasRelatedWork W3147045401 @default.
- W156793992 isParatext "false" @default.
- W156793992 isRetracted "false" @default.
- W156793992 magId "156793992" @default.
- W156793992 workType "article" @default.