Matches in SemOpenAlex for { <https://semopenalex.org/work/W1567953936> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W1567953936 endingPage "360" @default.
- W1567953936 startingPage "345" @default.
- W1567953936 abstract "For a decade, surface roughness is considered as the main factor of product quality since it has a great influence on the performance of mechanical parts as well as production cost. Surface roughness has an impact on the mechanical properties like fatigue behavior, corrosion resistance, creep life, etc. There are various methods for measurement of surface roughness. They are direct measurement methods, comparison based techniques, non contact methods and on process measurement. The parameters which lead to surface roughness are cutting speed, feed rate, depth of cut, cutting environment, cutting tool wears and so on. In the drilling process, if the speed becomes too high the tool will break and also if the speed becomes too low it will take a lot of time to complete the process and the production rate will go down. Thus, surface finish is an important factor to taken into account in the drilling process. So, it is more necessary to predict the surface roughness of the materials. A lot of researchers have been contributed in predicting the surface roughness of the materials. However, many of them failed since the input model and output categorization varies. Some of the research are ANN model for predicting surface roughness from machining parameters such as cutting speed, feed rate, and depth of cut. Another model is hybrid modeling approach, based on the group method of data handling and the differential evolution population-based algorithm, for modeling and predicting surface roughness in turning operations. But it is difficult to calculate the optimal cutting conditions for the considered material and tool. Also the neural network model coupled with the GA is proposed to determine the optimal machining for surface roughness. But, all these methods fail as there is a large variation in input model and output. Moreover, a recent research was conducted in predicting the surface roughness of materials. This predictive model of surface roughness is created by using back propagation neural network and EM (Electromagnetism) optimization algorithm is used to optimize the problem. The research showed that the EM algorithm coupled with back propagation neural network is an efficient and accurate method in obtaining the minimum of surface roughness. However, in order to further reduce the variation between input model and output, we proposed a feed forward neural network model using APSO (Adaptive particle swarm optimization) algorithm. Our proposed prediction model using APSO algorithm is a very efficient method in decreasing the variation between input model and output than the conventional PSO algorithm. Also, our proposed model minimizes the error to a greater extent than any other method." @default.
- W1567953936 created "2016-06-24" @default.
- W1567953936 creator A5005052908 @default.
- W1567953936 creator A5065706492 @default.
- W1567953936 date "2015-01-01" @default.
- W1567953936 modified "2023-10-17" @default.
- W1567953936 title "Surface roughness prediction model using adaptive particle swarm optimization (APSO) algorithm" @default.
- W1567953936 cites W194227629 @default.
- W1567953936 cites W1978618432 @default.
- W1567953936 cites W1992766001 @default.
- W1567953936 cites W2017668291 @default.
- W1567953936 cites W2032769515 @default.
- W1567953936 cites W2032971627 @default.
- W1567953936 cites W2033613435 @default.
- W1567953936 cites W2034278122 @default.
- W1567953936 cites W2042581041 @default.
- W1567953936 cites W2048669588 @default.
- W1567953936 cites W2073782888 @default.
- W1567953936 cites W2081033457 @default.
- W1567953936 cites W2082412098 @default.
- W1567953936 cites W2117307616 @default.
- W1567953936 cites W2119711457 @default.
- W1567953936 cites W2123014198 @default.
- W1567953936 cites W2139051817 @default.
- W1567953936 cites W2140347912 @default.
- W1567953936 cites W2140499752 @default.
- W1567953936 cites W2156714842 @default.
- W1567953936 cites W2285379334 @default.
- W1567953936 cites W2377291090 @default.
- W1567953936 doi "https://doi.org/10.3233/ifs-141310" @default.
- W1567953936 hasPublicationYear "2015" @default.
- W1567953936 type Work @default.
- W1567953936 sameAs 1567953936 @default.
- W1567953936 citedByCount "10" @default.
- W1567953936 countsByYear W15679539362016 @default.
- W1567953936 countsByYear W15679539362017 @default.
- W1567953936 countsByYear W15679539362018 @default.
- W1567953936 countsByYear W15679539362019 @default.
- W1567953936 countsByYear W15679539362021 @default.
- W1567953936 countsByYear W15679539362022 @default.
- W1567953936 countsByYear W15679539362023 @default.
- W1567953936 crossrefType "journal-article" @default.
- W1567953936 hasAuthorship W1567953936A5005052908 @default.
- W1567953936 hasAuthorship W1567953936A5065706492 @default.
- W1567953936 hasConcept C107365816 @default.
- W1567953936 hasConcept C11413529 @default.
- W1567953936 hasConcept C122357587 @default.
- W1567953936 hasConcept C126255220 @default.
- W1567953936 hasConcept C154945302 @default.
- W1567953936 hasConcept C159985019 @default.
- W1567953936 hasConcept C181335050 @default.
- W1567953936 hasConcept C192562407 @default.
- W1567953936 hasConcept C2524010 @default.
- W1567953936 hasConcept C2776799497 @default.
- W1567953936 hasConcept C33923547 @default.
- W1567953936 hasConcept C41008148 @default.
- W1567953936 hasConcept C85617194 @default.
- W1567953936 hasConceptScore W1567953936C107365816 @default.
- W1567953936 hasConceptScore W1567953936C11413529 @default.
- W1567953936 hasConceptScore W1567953936C122357587 @default.
- W1567953936 hasConceptScore W1567953936C126255220 @default.
- W1567953936 hasConceptScore W1567953936C154945302 @default.
- W1567953936 hasConceptScore W1567953936C159985019 @default.
- W1567953936 hasConceptScore W1567953936C181335050 @default.
- W1567953936 hasConceptScore W1567953936C192562407 @default.
- W1567953936 hasConceptScore W1567953936C2524010 @default.
- W1567953936 hasConceptScore W1567953936C2776799497 @default.
- W1567953936 hasConceptScore W1567953936C33923547 @default.
- W1567953936 hasConceptScore W1567953936C41008148 @default.
- W1567953936 hasConceptScore W1567953936C85617194 @default.
- W1567953936 hasIssue "1" @default.
- W1567953936 hasLocation W15679539361 @default.
- W1567953936 hasOpenAccess W1567953936 @default.
- W1567953936 hasPrimaryLocation W15679539361 @default.
- W1567953936 hasRelatedWork W1601689643 @default.
- W1567953936 hasRelatedWork W1992794286 @default.
- W1567953936 hasRelatedWork W2047636244 @default.
- W1567953936 hasRelatedWork W2084289551 @default.
- W1567953936 hasRelatedWork W2322270513 @default.
- W1567953936 hasRelatedWork W2359109965 @default.
- W1567953936 hasRelatedWork W2372447950 @default.
- W1567953936 hasRelatedWork W2994220932 @default.
- W1567953936 hasRelatedWork W3201210475 @default.
- W1567953936 hasRelatedWork W58882117 @default.
- W1567953936 hasVolume "28" @default.
- W1567953936 isParatext "false" @default.
- W1567953936 isRetracted "false" @default.
- W1567953936 magId "1567953936" @default.
- W1567953936 workType "article" @default.