Matches in SemOpenAlex for { <https://semopenalex.org/work/W1568560596> ?p ?o ?g. }
- W1568560596 endingPage "12" @default.
- W1568560596 startingPage "1" @default.
- W1568560596 abstract "In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy inference system approach, ANFIS) and a multilinear regression (MLR) model were developed to simulate the DO, TP, Chl a , and SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical errors, including the mean absolute error, the root mean square error, and the correlation coefficient, computed from the measured and the model-simulated DO, TP, Chl a , and SD values. The results indicate that the performance of the ANFIS model is superior to those of the MLR and RBFN models. The study results show that the neural network using the ANFIS model is suitable for simulating the water quality variables with reasonable accuracy, suggesting that the ANFIS model can be used as a valuable tool for reservoir management in Taiwan." @default.
- W1568560596 created "2016-06-24" @default.
- W1568560596 creator A5074702820 @default.
- W1568560596 creator A5085965210 @default.
- W1568560596 date "2015-06-09" @default.
- W1568560596 modified "2023-10-17" @default.
- W1568560596 title "Water Quality Modeling in Reservoirs Using Multivariate Linear Regression and Two Neural Network Models" @default.
- W1568560596 cites W1504082289 @default.
- W1568560596 cites W1967299434 @default.
- W1568560596 cites W1971333974 @default.
- W1568560596 cites W1978831934 @default.
- W1568560596 cites W1979344016 @default.
- W1568560596 cites W1984740135 @default.
- W1568560596 cites W1999960996 @default.
- W1568560596 cites W2006743190 @default.
- W1568560596 cites W2007262340 @default.
- W1568560596 cites W2008429402 @default.
- W1568560596 cites W2010611103 @default.
- W1568560596 cites W2017978747 @default.
- W1568560596 cites W2019207321 @default.
- W1568560596 cites W2021268039 @default.
- W1568560596 cites W2021432630 @default.
- W1568560596 cites W2023143999 @default.
- W1568560596 cites W2024753290 @default.
- W1568560596 cites W2024980804 @default.
- W1568560596 cites W2048353971 @default.
- W1568560596 cites W2054889803 @default.
- W1568560596 cites W2057018326 @default.
- W1568560596 cites W2057852818 @default.
- W1568560596 cites W2072106536 @default.
- W1568560596 cites W2075613153 @default.
- W1568560596 cites W2080184475 @default.
- W1568560596 cites W2088313792 @default.
- W1568560596 cites W2090612963 @default.
- W1568560596 cites W2094564876 @default.
- W1568560596 cites W2120514850 @default.
- W1568560596 cites W2126975596 @default.
- W1568560596 cites W2155399784 @default.
- W1568560596 cites W2171727779 @default.
- W1568560596 cites W2327687226 @default.
- W1568560596 cites W2329857398 @default.
- W1568560596 cites W2332474383 @default.
- W1568560596 cites W75613227 @default.
- W1568560596 doi "https://doi.org/10.1155/2015/521721" @default.
- W1568560596 hasPublicationYear "2015" @default.
- W1568560596 type Work @default.
- W1568560596 sameAs 1568560596 @default.
- W1568560596 citedByCount "51" @default.
- W1568560596 countsByYear W15685605962015 @default.
- W1568560596 countsByYear W15685605962016 @default.
- W1568560596 countsByYear W15685605962017 @default.
- W1568560596 countsByYear W15685605962018 @default.
- W1568560596 countsByYear W15685605962019 @default.
- W1568560596 countsByYear W15685605962020 @default.
- W1568560596 countsByYear W15685605962021 @default.
- W1568560596 countsByYear W15685605962022 @default.
- W1568560596 countsByYear W15685605962023 @default.
- W1568560596 crossrefType "journal-article" @default.
- W1568560596 hasAuthorship W1568560596A5074702820 @default.
- W1568560596 hasAuthorship W1568560596A5085965210 @default.
- W1568560596 hasBestOaLocation W15685605961 @default.
- W1568560596 hasConcept C105795698 @default.
- W1568560596 hasConcept C128990827 @default.
- W1568560596 hasConcept C132917294 @default.
- W1568560596 hasConcept C139945424 @default.
- W1568560596 hasConcept C152877465 @default.
- W1568560596 hasConcept C154945302 @default.
- W1568560596 hasConcept C161584116 @default.
- W1568560596 hasConcept C186108316 @default.
- W1568560596 hasConcept C195975749 @default.
- W1568560596 hasConcept C202444582 @default.
- W1568560596 hasConcept C2780092901 @default.
- W1568560596 hasConcept C33923547 @default.
- W1568560596 hasConcept C41008148 @default.
- W1568560596 hasConcept C48921125 @default.
- W1568560596 hasConcept C50644808 @default.
- W1568560596 hasConcept C58166 @default.
- W1568560596 hasConcept C64946054 @default.
- W1568560596 hasConcept C83546350 @default.
- W1568560596 hasConcept C84392682 @default.
- W1568560596 hasConcept C98856871 @default.
- W1568560596 hasConceptScore W1568560596C105795698 @default.
- W1568560596 hasConceptScore W1568560596C128990827 @default.
- W1568560596 hasConceptScore W1568560596C132917294 @default.
- W1568560596 hasConceptScore W1568560596C139945424 @default.
- W1568560596 hasConceptScore W1568560596C152877465 @default.
- W1568560596 hasConceptScore W1568560596C154945302 @default.
- W1568560596 hasConceptScore W1568560596C161584116 @default.
- W1568560596 hasConceptScore W1568560596C186108316 @default.
- W1568560596 hasConceptScore W1568560596C195975749 @default.
- W1568560596 hasConceptScore W1568560596C202444582 @default.
- W1568560596 hasConceptScore W1568560596C2780092901 @default.
- W1568560596 hasConceptScore W1568560596C33923547 @default.
- W1568560596 hasConceptScore W1568560596C41008148 @default.
- W1568560596 hasConceptScore W1568560596C48921125 @default.
- W1568560596 hasConceptScore W1568560596C50644808 @default.
- W1568560596 hasConceptScore W1568560596C58166 @default.
- W1568560596 hasConceptScore W1568560596C64946054 @default.