Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569003132> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1569003132 endingPage "1697" @default.
- W1569003132 startingPage "1696" @default.
- W1569003132 abstract "In his paper, Gunter Schumann provides an excellent review of the progress and perspectives of an approach that tries to link genetic variance with heritable biological phenotypes (‘endophenotypes’) rather than complex disease categories [1]. In complex disorders such as alcohol dependence, it may be extremely complicated to identify the multitude of genetic interactions that dispose a certain individual to develop addictive behaviour, while Schumann and collaborators successfully discovered a gene that interacts with circumscribed phenotypes such as glutamate transporter expression, excessive alcohol intake and acamprosate response [2]. This discovery may help to elucidate individual differences in medication response and thus help to establish individually tailored treatment algorithms in alcohol-dependent patients. However, while such studies have helped substantially to shed light on previously unknown genotype–phenotype interactions, studies with other genes have yielded controversial results. One example also discussed by Schumann [1] is the role of a functional polymorphism that is composed either of 14 (‘short’) or 16 (‘long’) repeat elements containing 22–23 base-pairs imperfect repeat polymorphisms in the regulatory region of the serotonin transporter gene (5-HTTLPR). In accordance with the concept of intermediate phenotypes, it can be shown that the effects of genetic variation in the 5-HTTLPR are strongest when gene-related protein expression is measured, while effects are substantially weaker when functional brain activation or clinical behavior is assessed: compared with carriers with one or two 5-HTTLPR short alleles (S-carriers), homozygote carriers of two long alleles (LL) displayed a 50% increase in serotonin transporter (5-HTT) density and function [3] if they do not carry an A→G substitution in the 5-HTTLPR that results in functional similarity of LG and S[4, 5]. While the 5-HTTLPR thus profoundly modulates serotonin transporter expression, it shows only a minor effect on trait anxiety, explaining not more than 4% of the interindividual variance [3]. Trait anxiety seems to be modulated by serotonin effects on amygdala activation during confrontation with aversive stimuli, which was increased in human S-carriers with low serotonin transporter availability [6-9]. Because high trait anxiety may predispose humans and non-human primates towards excessive alcohol intake, the 5-HTTLPR has been associated with alcohol dependence, albeit with inconsistent results (e.g. [10]). One possible explanation for the inconsistent data is the existence of gene–environmental interactions that mimic 5-HTTLPR effects on serotonin transporter availability. For example, it has been shown that serotonin turnover rates are reduced substantially in non-human primates, but only if they carry the 5-HTTLPR S-allele and have experienced early social isolation stress [11]. Endogenous serotonin competes with brain imaging radioligands such as β-CIT for 5-HTT binding [12]. As a consequence, low extracellular serotonin concentrations are associated with an elevation of serotonin transporters in the raphe (brainstem) area [13]. Elevated brainstem 5-HTT availability was correlated with low effects of acute alcohol intake [13], an endophenotype that predicts the risk to develop alcoholism [14], and with excessive alcohol consumption in non-human primates [15]. In these non-human primates that carried a 5-HTTLPR S-allele, elevated serotonin transporter availability and a low response to alcohol effects resulted from low serotonin turnover rates following social isolation stress. However, elevated serotonin transporters and a low response to alcohol cannot occur only in 5-HTTLPR S-carriers following social isolation stress [13, 15, 16]; it is also found in LL-homozygotes, as this genotype normally increases the expression and function of serotonin transporters [3, 5, 17]. Indeed, in human studies and animal experiments, LL-homozygotes displayed a low response to alcohol and excessive alcohol consumption [14, 17, 18]. This observation shows that in certain genotypes (e.g. S-carriers of the 5-HTTLPR), gene–environment interactions (e.g. developmentally early social isolation stress) may result in a phenotype (in this case: increased 5-HTT availability and a low response to alcohol) that is also present in individuals who carry another genotype (here: 5-HTTLPR LL-homozygotes). Given a certain environmental background, both 5-HTT genetic variants may thus result in high availability of 5-HTT brainstem transporters and predispose to excessive alcohol intake, which may explain why no straightforward association has been found between 5-HTT genotype and alcohol dependence [10]. While such phenocopies may render the search for the genetic causes of addictive behaviour substantially more difficult, they shed light on gene–environmental interactions and on the neurobiological underpinnings of behavior traits associated with excessive alcohol intake. Ultimately, the research of Gunter Schumann and other geneticists will improve our understanding of both genetic and social factors in the development of alcoholism [1]. This study was supported by the Deutsche Forschungsgemeinschaft (He 2597/7-3 and 4-3)." @default.
- W1569003132 created "2016-06-24" @default.
- W1569003132 creator A5000701045 @default.
- W1569003132 creator A5005468474 @default.
- W1569003132 creator A5010994708 @default.
- W1569003132 creator A5022065571 @default.
- W1569003132 creator A5084800562 @default.
- W1569003132 date "2007-11-01" @default.
- W1569003132 modified "2023-10-18" @default.
- W1569003132 title "GENETIC RESEARCH WITH INTERMEDIATE PHENOTYPES: PHENOCOPIES, PERSPECTIVES AND PITFALLS" @default.
- W1569003132 cites W114718013 @default.
- W1569003132 cites W1965185615 @default.
- W1569003132 cites W1975999093 @default.
- W1569003132 cites W2001032174 @default.
- W1569003132 cites W2028838843 @default.
- W1569003132 cites W2045728711 @default.
- W1569003132 cites W2051757167 @default.
- W1569003132 cites W2070942442 @default.
- W1569003132 cites W2080846594 @default.
- W1569003132 cites W2081601639 @default.
- W1569003132 cites W2088495786 @default.
- W1569003132 cites W2088525127 @default.
- W1569003132 cites W2106095564 @default.
- W1569003132 cites W2140395780 @default.
- W1569003132 cites W2142035783 @default.
- W1569003132 cites W2147351252 @default.
- W1569003132 cites W2151135161 @default.
- W1569003132 cites W2152364178 @default.
- W1569003132 doi "https://doi.org/10.1111/j.1360-0443.2007.01994.x" @default.
- W1569003132 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17935576" @default.
- W1569003132 hasPublicationYear "2007" @default.
- W1569003132 type Work @default.
- W1569003132 sameAs 1569003132 @default.
- W1569003132 citedByCount "3" @default.
- W1569003132 countsByYear W15690031322014 @default.
- W1569003132 crossrefType "journal-article" @default.
- W1569003132 hasAuthorship W1569003132A5000701045 @default.
- W1569003132 hasAuthorship W1569003132A5005468474 @default.
- W1569003132 hasAuthorship W1569003132A5010994708 @default.
- W1569003132 hasAuthorship W1569003132A5022065571 @default.
- W1569003132 hasAuthorship W1569003132A5084800562 @default.
- W1569003132 hasBestOaLocation W15690031321 @default.
- W1569003132 hasConcept C104317684 @default.
- W1569003132 hasConcept C12387725 @default.
- W1569003132 hasConcept C127716648 @default.
- W1569003132 hasConcept C135763542 @default.
- W1569003132 hasConcept C15744967 @default.
- W1569003132 hasConcept C169760540 @default.
- W1569003132 hasConcept C169900460 @default.
- W1569003132 hasConcept C180754005 @default.
- W1569003132 hasConcept C187869287 @default.
- W1569003132 hasConcept C2778897192 @default.
- W1569003132 hasConcept C2779436514 @default.
- W1569003132 hasConcept C2781066024 @default.
- W1569003132 hasConcept C5284366 @default.
- W1569003132 hasConcept C54355233 @default.
- W1569003132 hasConcept C55493867 @default.
- W1569003132 hasConcept C86803240 @default.
- W1569003132 hasConceptScore W1569003132C104317684 @default.
- W1569003132 hasConceptScore W1569003132C12387725 @default.
- W1569003132 hasConceptScore W1569003132C127716648 @default.
- W1569003132 hasConceptScore W1569003132C135763542 @default.
- W1569003132 hasConceptScore W1569003132C15744967 @default.
- W1569003132 hasConceptScore W1569003132C169760540 @default.
- W1569003132 hasConceptScore W1569003132C169900460 @default.
- W1569003132 hasConceptScore W1569003132C180754005 @default.
- W1569003132 hasConceptScore W1569003132C187869287 @default.
- W1569003132 hasConceptScore W1569003132C2778897192 @default.
- W1569003132 hasConceptScore W1569003132C2779436514 @default.
- W1569003132 hasConceptScore W1569003132C2781066024 @default.
- W1569003132 hasConceptScore W1569003132C5284366 @default.
- W1569003132 hasConceptScore W1569003132C54355233 @default.
- W1569003132 hasConceptScore W1569003132C55493867 @default.
- W1569003132 hasConceptScore W1569003132C86803240 @default.
- W1569003132 hasIssue "11" @default.
- W1569003132 hasLocation W15690031321 @default.
- W1569003132 hasLocation W15690031322 @default.
- W1569003132 hasOpenAccess W1569003132 @default.
- W1569003132 hasPrimaryLocation W15690031321 @default.
- W1569003132 hasRelatedWork W1974993416 @default.
- W1569003132 hasRelatedWork W1977949510 @default.
- W1569003132 hasRelatedWork W1985560166 @default.
- W1569003132 hasRelatedWork W1992256038 @default.
- W1569003132 hasRelatedWork W2034211922 @default.
- W1569003132 hasRelatedWork W2105363832 @default.
- W1569003132 hasRelatedWork W2117674106 @default.
- W1569003132 hasRelatedWork W2166223104 @default.
- W1569003132 hasRelatedWork W2371329637 @default.
- W1569003132 hasRelatedWork W2371349914 @default.
- W1569003132 hasVolume "102" @default.
- W1569003132 isParatext "false" @default.
- W1569003132 isRetracted "false" @default.
- W1569003132 magId "1569003132" @default.
- W1569003132 workType "article" @default.