Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569016212> ?p ?o ?g. }
- W1569016212 abstract "Traditionally, variable selection in the context of linear regression has been approached using optimization based approaches like the classical Lasso. Such methods provide a sparsepoint estimate with respect to regression coefficients but are unable to provide more information regarding the distribution of regression coefficients like expectation, varianceestimates etc. In the recent years, there has been some progress on the Bayesian formulation for variable selection like for example, the Bayesian Lasso. Motivated by these developments, in this thesis, we build an omnibus Bayesian framework for grouped-variableselection in linear regression models. This framework is capable of summarizing the posterior distribution over the regression coefficients with estimates for the moments andthe mode. The inference is carried out using Markov Chain Monte Carlo (MCMC) sampling. The estimate for the mode of the posterior distribution over regression coefficients is also generated from the same MCMC sampling algorithm with minimal changes using simulated annealing.Going beyond simple linear regression, the framework is also extended further to accommodate generalized linear models like Poisson and binomial models with minimal changes to the framework. On the algorithm side, we develop a highly efficient MCMC sampling algorithm for inference purposes. Apart from the Poisson and binomial models, another model that has been incorporated into this framework is the Weibull model which is extensively used for survival analysis. This extension has been combined with an additional clustering component using a survival mixture-of-experts model. The clustering component is particularly useful for performing variable selection (per cluster) simultaneously with cluster identification using Dirichlet processes which avoids the need for fixing the number of clusters in advance.The resulting framework has been applied to several biological applications like identification of novel compound bio-markers for breast cancer from tissue microarray data and analyzing splice site data for identifying distinguishing features of true splice sites.Survival data for breast cancer patients has been used to identify low-risk and high-riskpatients and the significant compound markers of each group." @default.
- W1569016212 created "2016-06-24" @default.
- W1569016212 creator A5025057565 @default.
- W1569016212 date "2012-01-01" @default.
- W1569016212 modified "2023-09-25" @default.
- W1569016212 title "Bayesian grouped variable selection" @default.
- W1569016212 cites W130710483 @default.
- W1569016212 cites W1516111018 @default.
- W1569016212 cites W1523437445 @default.
- W1569016212 cites W1528905581 @default.
- W1569016212 cites W1556278552 @default.
- W1569016212 cites W1572687456 @default.
- W1569016212 cites W1580788756 @default.
- W1569016212 cites W1663973292 @default.
- W1569016212 cites W1766895266 @default.
- W1569016212 cites W1830407698 @default.
- W1569016212 cites W1934021597 @default.
- W1569016212 cites W1966411627 @default.
- W1569016212 cites W1969174411 @default.
- W1569016212 cites W1969415786 @default.
- W1569016212 cites W1976365540 @default.
- W1569016212 cites W1982652137 @default.
- W1569016212 cites W1984568490 @default.
- W1569016212 cites W1984915212 @default.
- W1569016212 cites W1986931325 @default.
- W1569016212 cites W1999974018 @default.
- W1569016212 cites W2007069447 @default.
- W1569016212 cites W2008110616 @default.
- W1569016212 cites W2008966356 @default.
- W1569016212 cites W2010871781 @default.
- W1569016212 cites W2011257994 @default.
- W1569016212 cites W2016450442 @default.
- W1569016212 cites W2016856907 @default.
- W1569016212 cites W2020925091 @default.
- W1569016212 cites W2024060531 @default.
- W1569016212 cites W2033828039 @default.
- W1569016212 cites W2034691490 @default.
- W1569016212 cites W2039476734 @default.
- W1569016212 cites W2041779820 @default.
- W1569016212 cites W2045656233 @default.
- W1569016212 cites W2049882758 @default.
- W1569016212 cites W2059272061 @default.
- W1569016212 cites W2063978378 @default.
- W1569016212 cites W2070094080 @default.
- W1569016212 cites W2070612147 @default.
- W1569016212 cites W2071558725 @default.
- W1569016212 cites W2079775628 @default.
- W1569016212 cites W2080972498 @default.
- W1569016212 cites W2087810003 @default.
- W1569016212 cites W2097255042 @default.
- W1569016212 cites W2098949458 @default.
- W1569016212 cites W2100127103 @default.
- W1569016212 cites W2102934843 @default.
- W1569016212 cites W2103087220 @default.
- W1569016212 cites W2106398669 @default.
- W1569016212 cites W2118036030 @default.
- W1569016212 cites W2122825543 @default.
- W1569016212 cites W2131994307 @default.
- W1569016212 cites W2135046866 @default.
- W1569016212 cites W2136883754 @default.
- W1569016212 cites W2137123230 @default.
- W1569016212 cites W2138019504 @default.
- W1569016212 cites W2140014834 @default.
- W1569016212 cites W2140514146 @default.
- W1569016212 cites W2141083924 @default.
- W1569016212 cites W2142595785 @default.
- W1569016212 cites W2150884987 @default.
- W1569016212 cites W2151548579 @default.
- W1569016212 cites W2154061444 @default.
- W1569016212 cites W2159375150 @default.
- W1569016212 cites W2161689087 @default.
- W1569016212 cites W2166471851 @default.
- W1569016212 cites W2890620276 @default.
- W1569016212 cites W3124369579 @default.
- W1569016212 cites W45374770 @default.
- W1569016212 cites W12314118 @default.
- W1569016212 doi "https://doi.org/10.5451/unibas-005976904" @default.
- W1569016212 hasPublicationYear "2012" @default.
- W1569016212 type Work @default.
- W1569016212 sameAs 1569016212 @default.
- W1569016212 citedByCount "0" @default.
- W1569016212 crossrefType "dissertation" @default.
- W1569016212 hasAuthorship W1569016212A5025057565 @default.
- W1569016212 hasConcept C105795698 @default.
- W1569016212 hasConcept C107673813 @default.
- W1569016212 hasConcept C111350023 @default.
- W1569016212 hasConcept C136764020 @default.
- W1569016212 hasConcept C148483581 @default.
- W1569016212 hasConcept C154945302 @default.
- W1569016212 hasConcept C160234255 @default.
- W1569016212 hasConcept C33923547 @default.
- W1569016212 hasConcept C37616216 @default.
- W1569016212 hasConcept C37903108 @default.
- W1569016212 hasConcept C41008148 @default.
- W1569016212 hasConcept C57830394 @default.
- W1569016212 hasConcept C73555534 @default.
- W1569016212 hasConcept C93959086 @default.
- W1569016212 hasConceptScore W1569016212C105795698 @default.
- W1569016212 hasConceptScore W1569016212C107673813 @default.
- W1569016212 hasConceptScore W1569016212C111350023 @default.