Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569098853> ?p ?o ?g. }
- W1569098853 abstract "An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields.Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community." @default.
- W1569098853 created "2016-06-24" @default.
- W1569098853 creator A5000291599 @default.
- W1569098853 creator A5046109083 @default.
- W1569098853 creator A5058767558 @default.
- W1569098853 date "2011-09-30" @default.
- W1569098853 modified "2023-10-05" @default.
- W1569098853 title "Optimization for Machine Learning" @default.
- W1569098853 cites W1482443696 @default.
- W1569098853 cites W1486988219 @default.
- W1569098853 cites W1488435683 @default.
- W1569098853 cites W1488797257 @default.
- W1569098853 cites W1489416609 @default.
- W1569098853 cites W1497745584 @default.
- W1569098853 cites W1502653686 @default.
- W1569098853 cites W1504194272 @default.
- W1569098853 cites W1504946885 @default.
- W1569098853 cites W1505731132 @default.
- W1569098853 cites W1508384000 @default.
- W1569098853 cites W1509803206 @default.
- W1569098853 cites W1510073064 @default.
- W1569098853 cites W1517928879 @default.
- W1569098853 cites W1518039036 @default.
- W1569098853 cites W1528133536 @default.
- W1569098853 cites W1540198634 @default.
- W1569098853 cites W1541527977 @default.
- W1569098853 cites W1542886316 @default.
- W1569098853 cites W1564354676 @default.
- W1569098853 cites W1564947197 @default.
- W1569098853 cites W1567512734 @default.
- W1569098853 cites W1568229137 @default.
- W1569098853 cites W1570963478 @default.
- W1569098853 cites W1571024744 @default.
- W1569098853 cites W1571051474 @default.
- W1569098853 cites W1576520375 @default.
- W1569098853 cites W1581558595 @default.
- W1569098853 cites W1586233612 @default.
- W1569098853 cites W1592941960 @default.
- W1569098853 cites W160007757 @default.
- W1569098853 cites W1601035521 @default.
- W1569098853 cites W1603213931 @default.
- W1569098853 cites W1625390266 @default.
- W1569098853 cites W1646506067 @default.
- W1569098853 cites W1648445109 @default.
- W1569098853 cites W1669104078 @default.
- W1569098853 cites W1736339626 @default.
- W1569098853 cites W1754455042 @default.
- W1569098853 cites W1786332878 @default.
- W1569098853 cites W1881419322 @default.
- W1569098853 cites W1902027874 @default.
- W1569098853 cites W1908100068 @default.
- W1569098853 cites W1946620893 @default.
- W1569098853 cites W1953936588 @default.
- W1569098853 cites W1961366647 @default.
- W1569098853 cites W1965073581 @default.
- W1569098853 cites W1965270141 @default.
- W1569098853 cites W1965878388 @default.
- W1569098853 cites W1966096622 @default.
- W1569098853 cites W1968678581 @default.
- W1569098853 cites W1970986119 @default.
- W1569098853 cites W1972581644 @default.
- W1569098853 cites W1973117121 @default.
- W1569098853 cites W1975377467 @default.
- W1569098853 cites W1978119584 @default.
- W1569098853 cites W1982511487 @default.
- W1569098853 cites W1984568490 @default.
- W1569098853 cites W1984915212 @default.
- W1569098853 cites W1986502734 @default.
- W1569098853 cites W1986931325 @default.
- W1569098853 cites W1987953347 @default.
- W1569098853 cites W1993367034 @default.
- W1569098853 cites W1996287810 @default.
- W1569098853 cites W1998498767 @default.
- W1569098853 cites W1998871699 @default.
- W1569098853 cites W1999219269 @default.
- W1569098853 cites W2003372231 @default.
- W1569098853 cites W2003777645 @default.
- W1569098853 cites W2004001705 @default.
- W1569098853 cites W2004747092 @default.
- W1569098853 cites W2004915807 @default.
- W1569098853 cites W2005688170 @default.
- W1569098853 cites W2006262045 @default.
- W1569098853 cites W2008056655 @default.
- W1569098853 cites W2008772536 @default.
- W1569098853 cites W2009551863 @default.
- W1569098853 cites W2012329067 @default.
- W1569098853 cites W2012731843 @default.
- W1569098853 cites W2013628511 @default.
- W1569098853 cites W2014268383 @default.
- W1569098853 cites W2017753243 @default.
- W1569098853 cites W2019569173 @default.
- W1569098853 cites W2023068579 @default.
- W1569098853 cites W2027197817 @default.
- W1569098853 cites W2028080169 @default.
- W1569098853 cites W2031823405 @default.
- W1569098853 cites W2032871739 @default.
- W1569098853 cites W203308545 @default.
- W1569098853 cites W2033736734 @default.
- W1569098853 cites W2033957915 @default.
- W1569098853 cites W2038497950 @default.