Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569145343> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W1569145343 abstract "Speech technologies such as speech recognition and speech synthesis have many potential applications since speech is the main way in which most people communicate. Various linguistic sounds are produced by controlling the configuration of oral cavities to convey a message in speech communication. The produced speech sounds temporally vary and are significantly affected by coarticulation effects. Thus, it is not straightforward to segment speech signals into corresponding linguistic symbols. Moreover, the acoustics of speech vary even if the same words are uttered by the same speaker due to differences in the manner of speaking and articulatory organs. Therefore, it is essential to stochastically model them in speech processing. The hidden Markov model (HMM) is an effective framework for modeling the acoustics of speech. Its introduction has enabled significant progress in speech and language technologies. In particular, there have been numerous efforts to develop HMM-based acoustic modeling techniques in speech recognition, and continuous density HMMs have been widely used in modern continuous speech recognition systems (Gales & Young (2008)). Moreover, several approaches have been proposed for applying the HMM-based acoustic modeling techniques to speech synthesis technologies (Donovan & Woodland (1995); Huang et al. (1996)) such as Text-to-Speech (TTS), which is ... from a given text. Recently, HMM-based speech synthesis has been proposed (Yoshimura et al. (1999)) and has generated interest owing to its various attractive features such as completely data-driven voice building, flexible voice quality control, speaker adaptation, small footprint, and so forth (Zen et al. (2009)). A basic framework of HMM-based speech synthesis consists of training and synthesis processes. In the training process, speech parameters such as spectral envelope and fundamental frequency (F0) are extracted from speech waveforms and then their time sequences are modeled by context-dependent phoneme HMMs. To model the dynamic characteristics of speech acoustics with HMMs, which assume piecewise constant statistics within an HMM state and conditional independence, a joint vector of static and dynamic features is usually used as an observation vector. In the synthesis process, a smoothly varying speech parameter trajectory is generated by maximizing the likelihood of a composite sentence HMM subject to a constraint between static and dynamic features with respect to not the observation vector sequence including both static and dynamic features but the static feature vector sequence (Tokuda et al. (2000)). Finally, a vocoding technique is employed Modeling of Speech Parameter Sequence Considering Global Variance for HMM-Based Speech Synthesis 6" @default.
- W1569145343 created "2016-06-24" @default.
- W1569145343 creator A5078330211 @default.
- W1569145343 date "2011-04-19" @default.
- W1569145343 modified "2023-10-17" @default.
- W1569145343 title "Modeling of Speech Parameter Sequence Considering Global Variance for HMM-Based Speech Synthesis" @default.
- W1569145343 cites W1512429158 @default.
- W1569145343 cites W1600722501 @default.
- W1569145343 cites W1847897332 @default.
- W1569145343 cites W187033940 @default.
- W1569145343 cites W1935012542 @default.
- W1569145343 cites W1963627370 @default.
- W1569145343 cites W1979449467 @default.
- W1569145343 cites W2000513720 @default.
- W1569145343 cites W2042691334 @default.
- W1569145343 cites W2049686551 @default.
- W1569145343 cites W2096980176 @default.
- W1569145343 cites W2106792148 @default.
- W1569145343 cites W2111194146 @default.
- W1569145343 cites W2117418893 @default.
- W1569145343 cites W2129142580 @default.
- W1569145343 cites W2142416747 @default.
- W1569145343 cites W2143490509 @default.
- W1569145343 cites W2145575463 @default.
- W1569145343 cites W2156453709 @default.
- W1569145343 cites W2296704011 @default.
- W1569145343 cites W3177989406 @default.
- W1569145343 cites W64730254 @default.
- W1569145343 doi "https://doi.org/10.5772/14009" @default.
- W1569145343 hasPublicationYear "2011" @default.
- W1569145343 type Work @default.
- W1569145343 sameAs 1569145343 @default.
- W1569145343 citedByCount "7" @default.
- W1569145343 countsByYear W15691453432013 @default.
- W1569145343 countsByYear W15691453432016 @default.
- W1569145343 countsByYear W15691453432018 @default.
- W1569145343 countsByYear W15691453432022 @default.
- W1569145343 crossrefType "book-chapter" @default.
- W1569145343 hasAuthorship W1569145343A5078330211 @default.
- W1569145343 hasBestOaLocation W15691453431 @default.
- W1569145343 hasConcept C121955636 @default.
- W1569145343 hasConcept C144133560 @default.
- W1569145343 hasConcept C14999030 @default.
- W1569145343 hasConcept C154945302 @default.
- W1569145343 hasConcept C196083921 @default.
- W1569145343 hasConcept C23224414 @default.
- W1569145343 hasConcept C2778112365 @default.
- W1569145343 hasConcept C28490314 @default.
- W1569145343 hasConcept C41008148 @default.
- W1569145343 hasConcept C54355233 @default.
- W1569145343 hasConcept C86803240 @default.
- W1569145343 hasConceptScore W1569145343C121955636 @default.
- W1569145343 hasConceptScore W1569145343C144133560 @default.
- W1569145343 hasConceptScore W1569145343C14999030 @default.
- W1569145343 hasConceptScore W1569145343C154945302 @default.
- W1569145343 hasConceptScore W1569145343C196083921 @default.
- W1569145343 hasConceptScore W1569145343C23224414 @default.
- W1569145343 hasConceptScore W1569145343C2778112365 @default.
- W1569145343 hasConceptScore W1569145343C28490314 @default.
- W1569145343 hasConceptScore W1569145343C41008148 @default.
- W1569145343 hasConceptScore W1569145343C54355233 @default.
- W1569145343 hasConceptScore W1569145343C86803240 @default.
- W1569145343 hasLocation W15691453431 @default.
- W1569145343 hasLocation W15691453432 @default.
- W1569145343 hasOpenAccess W1569145343 @default.
- W1569145343 hasPrimaryLocation W15691453431 @default.
- W1569145343 hasRelatedWork W155946340 @default.
- W1569145343 hasRelatedWork W1589081167 @default.
- W1569145343 hasRelatedWork W2038801705 @default.
- W1569145343 hasRelatedWork W2095546502 @default.
- W1569145343 hasRelatedWork W2108224380 @default.
- W1569145343 hasRelatedWork W2110108310 @default.
- W1569145343 hasRelatedWork W2181773877 @default.
- W1569145343 hasRelatedWork W2579204149 @default.
- W1569145343 hasRelatedWork W2904846757 @default.
- W1569145343 hasRelatedWork W2968379855 @default.
- W1569145343 isParatext "false" @default.
- W1569145343 isRetracted "false" @default.
- W1569145343 magId "1569145343" @default.
- W1569145343 workType "book-chapter" @default.