Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569164328> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1569164328 endingPage "119" @default.
- W1569164328 startingPage "110" @default.
- W1569164328 abstract "Accurate forecasting of rainfall has been one of the most important issues in hydrological research. In this paper, a novel neural network technique, support vector regression (SVR), to monthly rainfall forecasting. The aim of this study is to examine the feasibility of SVR in monthly rainfall forecasting by comparing it with back–propagation neural networks (BPNN) and the autoregressive integrated moving average (ARIMA) model. This study proposes a novel approach, known as particle swarm optimization (PSO) algorithms, which searches for SVR’s optimal parameters, and then adopts the optimal parameters to construct the SVR models. The monthly rainfall in Guangxi of China during 1985–2001 were employed as the data set. The experimental results demonstrate that SVR outperforms the BPNN and ARIMA models based on the normalized mean square error (NMSE) and mean absolute percentage error (MAPE)." @default.
- W1569164328 created "2016-06-24" @default.
- W1569164328 creator A5031061480 @default.
- W1569164328 creator A5050352409 @default.
- W1569164328 date "2010-01-01" @default.
- W1569164328 modified "2023-10-15" @default.
- W1569164328 title "The Model of Rainfall Forecasting by Support Vector Regression Based on Particle Swarm Optimization Algorithms" @default.
- W1569164328 cites W1480376833 @default.
- W1569164328 cites W1535006492 @default.
- W1569164328 cites W1540147630 @default.
- W1569164328 cites W18873535 @default.
- W1569164328 cites W1969322008 @default.
- W1569164328 cites W1978102254 @default.
- W1569164328 cites W1996150433 @default.
- W1569164328 cites W2001593107 @default.
- W1569164328 cites W2023430894 @default.
- W1569164328 cites W2029602541 @default.
- W1569164328 cites W2031762450 @default.
- W1569164328 cites W2033486907 @default.
- W1569164328 cites W2059115408 @default.
- W1569164328 cites W2093476958 @default.
- W1569164328 cites W2124131771 @default.
- W1569164328 cites W2143628522 @default.
- W1569164328 cites W2161920802 @default.
- W1569164328 doi "https://doi.org/10.1007/978-3-642-15597-0_13" @default.
- W1569164328 hasPublicationYear "2010" @default.
- W1569164328 type Work @default.
- W1569164328 sameAs 1569164328 @default.
- W1569164328 citedByCount "5" @default.
- W1569164328 countsByYear W15691643282013 @default.
- W1569164328 countsByYear W15691643282015 @default.
- W1569164328 countsByYear W15691643282021 @default.
- W1569164328 countsByYear W15691643282022 @default.
- W1569164328 crossrefType "book-chapter" @default.
- W1569164328 hasAuthorship W1569164328A5031061480 @default.
- W1569164328 hasAuthorship W1569164328A5050352409 @default.
- W1569164328 hasConcept C105795698 @default.
- W1569164328 hasConcept C11413529 @default.
- W1569164328 hasConcept C119857082 @default.
- W1569164328 hasConcept C12267149 @default.
- W1569164328 hasConcept C124101348 @default.
- W1569164328 hasConcept C139945424 @default.
- W1569164328 hasConcept C150217764 @default.
- W1569164328 hasConcept C151406439 @default.
- W1569164328 hasConcept C154945302 @default.
- W1569164328 hasConcept C159877910 @default.
- W1569164328 hasConcept C24338571 @default.
- W1569164328 hasConcept C33923547 @default.
- W1569164328 hasConcept C41008148 @default.
- W1569164328 hasConcept C50644808 @default.
- W1569164328 hasConcept C85617194 @default.
- W1569164328 hasConceptScore W1569164328C105795698 @default.
- W1569164328 hasConceptScore W1569164328C11413529 @default.
- W1569164328 hasConceptScore W1569164328C119857082 @default.
- W1569164328 hasConceptScore W1569164328C12267149 @default.
- W1569164328 hasConceptScore W1569164328C124101348 @default.
- W1569164328 hasConceptScore W1569164328C139945424 @default.
- W1569164328 hasConceptScore W1569164328C150217764 @default.
- W1569164328 hasConceptScore W1569164328C151406439 @default.
- W1569164328 hasConceptScore W1569164328C154945302 @default.
- W1569164328 hasConceptScore W1569164328C159877910 @default.
- W1569164328 hasConceptScore W1569164328C24338571 @default.
- W1569164328 hasConceptScore W1569164328C33923547 @default.
- W1569164328 hasConceptScore W1569164328C41008148 @default.
- W1569164328 hasConceptScore W1569164328C50644808 @default.
- W1569164328 hasConceptScore W1569164328C85617194 @default.
- W1569164328 hasLocation W15691643281 @default.
- W1569164328 hasOpenAccess W1569164328 @default.
- W1569164328 hasPrimaryLocation W15691643281 @default.
- W1569164328 hasRelatedWork W1569164328 @default.
- W1569164328 hasRelatedWork W2069388972 @default.
- W1569164328 hasRelatedWork W2146552111 @default.
- W1569164328 hasRelatedWork W2305568609 @default.
- W1569164328 hasRelatedWork W2568687501 @default.
- W1569164328 hasRelatedWork W2770456714 @default.
- W1569164328 hasRelatedWork W2778123278 @default.
- W1569164328 hasRelatedWork W3134598105 @default.
- W1569164328 hasRelatedWork W4293155440 @default.
- W1569164328 hasRelatedWork W4327622542 @default.
- W1569164328 isParatext "false" @default.
- W1569164328 isRetracted "false" @default.
- W1569164328 magId "1569164328" @default.
- W1569164328 workType "book-chapter" @default.