Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569168556> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1569168556 abstract "We develop an asymptotic prime counting function based on the sieve process of Erathostenes. This function can be generalized to include a finite set of conditions imposed on sums (generalized Goldbach conditions) or differences (generalized Polignac conditions) of M primes. With one additive condition for two primes p1, p2 (M=2) with p1+p2=E, the generalized counting function approximates the number of Goldbach partitions and its average lower bound. Its relative errors decrease with increasing even number E, and so enable it to explain the structure of the Goldbach-pair counting function. With one subtractive condition for two primes (M=2), the number of prime pairs with a given distance (e.g. twin primes with distance 2) in the interval 2...Z (Z=integer) can be estimated. For more than two primes (M>2), additive and subtractive conditions can be mixed. As examples, counting functions are considered to investigate strings of M=5 or more equidistant primes, twin-Goldbach pairs (M=4), and well known triplets (M=3) or quadruplets (M=4). The generalized counting function is based on an equality assumption we cannot prove (a would be equivalent to a simultaneous for the Goldbach conjecture and other conjectures involving more than 2 primes). However, reasons given for its validity include an observed scaling relation for the quasi-random errors of the generalized counting function, leading to a heuristic proof for the Goldbach conjecture. The problem Instead of trying to solve one of the hardest problems in number theory, we make the task even more difficult! Beyond asking for at least one prime pair adding up to a given even number E, we are e.g. interested in the number of prime pairs p1+p2=E that are at the same time members of twin primes in such a way that p1-2 and p2+2 are also primes. For E=36 the three twin-Goldbach pairs would be 7+29, 19+17 and 31+5. For which E≥12 are there solutions and how many? Our generalized counting function answers these and other questions with an accuracy quickly increasing with increasing E. Does our method show a way heading towards a of the Goldbach conjecture? Introduction Goldbach's conjecture from 1742 states that every even integer E>2 can be expressed as sum of two primes (in the following called Goldbach pairs or Goldbach partitions). Though computer-based numerical tests have confirmed the theorem up to 4·10 (and ongoing computations have increased this limit to over 8·10), it resisted any formal mathematical up to now. Polignac's conjecture from 1849 states that there exist infinitely many pairs of consecutive primes with any given even difference D≥2. A necessary condition for the conjectures to be valid is, that" @default.
- W1569168556 created "2016-06-24" @default.
- W1569168556 creator A5040735307 @default.
- W1569168556 creator A5064797898 @default.
- W1569168556 date "2007-01-01" @default.
- W1569168556 modified "2023-09-23" @default.
- W1569168556 title "Generalization of the Goldbach-Polignac conjectures and estimation of counting functions" @default.
- W1569168556 cites W1541635228 @default.
- W1569168556 cites W1639761269 @default.
- W1569168556 cites W1972837770 @default.
- W1569168556 cites W2071743058 @default.
- W1569168556 cites W2158126245 @default.
- W1569168556 cites W2320598163 @default.
- W1569168556 cites W2602086043 @default.
- W1569168556 cites W402555785 @default.
- W1569168556 cites W588871805 @default.
- W1569168556 cites W2599510514 @default.
- W1569168556 doi "https://doi.org/10.3929/ethz-a-005421216" @default.
- W1569168556 hasPublicationYear "2007" @default.
- W1569168556 type Work @default.
- W1569168556 sameAs 1569168556 @default.
- W1569168556 citedByCount "2" @default.
- W1569168556 countsByYear W15691685562016 @default.
- W1569168556 crossrefType "journal-article" @default.
- W1569168556 hasAuthorship W1569168556A5040735307 @default.
- W1569168556 hasAuthorship W1569168556A5064797898 @default.
- W1569168556 hasConcept C114614502 @default.
- W1569168556 hasConcept C118615104 @default.
- W1569168556 hasConcept C134306372 @default.
- W1569168556 hasConcept C14036430 @default.
- W1569168556 hasConcept C143352335 @default.
- W1569168556 hasConcept C143732363 @default.
- W1569168556 hasConcept C169654258 @default.
- W1569168556 hasConcept C177148314 @default.
- W1569168556 hasConcept C199360897 @default.
- W1569168556 hasConcept C2778067643 @default.
- W1569168556 hasConcept C33923547 @default.
- W1569168556 hasConcept C41008148 @default.
- W1569168556 hasConcept C78458016 @default.
- W1569168556 hasConcept C86803240 @default.
- W1569168556 hasConcept C97137487 @default.
- W1569168556 hasConceptScore W1569168556C114614502 @default.
- W1569168556 hasConceptScore W1569168556C118615104 @default.
- W1569168556 hasConceptScore W1569168556C134306372 @default.
- W1569168556 hasConceptScore W1569168556C14036430 @default.
- W1569168556 hasConceptScore W1569168556C143352335 @default.
- W1569168556 hasConceptScore W1569168556C143732363 @default.
- W1569168556 hasConceptScore W1569168556C169654258 @default.
- W1569168556 hasConceptScore W1569168556C177148314 @default.
- W1569168556 hasConceptScore W1569168556C199360897 @default.
- W1569168556 hasConceptScore W1569168556C2778067643 @default.
- W1569168556 hasConceptScore W1569168556C33923547 @default.
- W1569168556 hasConceptScore W1569168556C41008148 @default.
- W1569168556 hasConceptScore W1569168556C78458016 @default.
- W1569168556 hasConceptScore W1569168556C86803240 @default.
- W1569168556 hasConceptScore W1569168556C97137487 @default.
- W1569168556 hasLocation W15691685561 @default.
- W1569168556 hasOpenAccess W1569168556 @default.
- W1569168556 hasPrimaryLocation W15691685561 @default.
- W1569168556 hasRelatedWork W1836492331 @default.
- W1569168556 hasRelatedWork W1931776888 @default.
- W1569168556 hasRelatedWork W2060782772 @default.
- W1569168556 hasRelatedWork W2250110183 @default.
- W1569168556 hasRelatedWork W2580482527 @default.
- W1569168556 hasRelatedWork W2585823536 @default.
- W1569168556 hasRelatedWork W2770544888 @default.
- W1569168556 hasRelatedWork W2786881810 @default.
- W1569168556 hasRelatedWork W2949992393 @default.
- W1569168556 hasRelatedWork W2951096767 @default.
- W1569168556 hasRelatedWork W2963186189 @default.
- W1569168556 hasRelatedWork W2965893648 @default.
- W1569168556 hasRelatedWork W2996215060 @default.
- W1569168556 hasRelatedWork W3026391377 @default.
- W1569168556 hasRelatedWork W3096248006 @default.
- W1569168556 hasRelatedWork W3099496634 @default.
- W1569168556 hasRelatedWork W3099649495 @default.
- W1569168556 hasRelatedWork W3165100954 @default.
- W1569168556 hasRelatedWork W3207264663 @default.
- W1569168556 isParatext "false" @default.
- W1569168556 isRetracted "false" @default.
- W1569168556 magId "1569168556" @default.
- W1569168556 workType "article" @default.