Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569176717> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1569176717 abstract "Neural networks are a popular machine learning tool, particularly in applications such as the prediction of protein secondary structure. However, overfitting poses an obstacle to their effective use for this and other problems. Due to the large number of parameters in a typical neural network, one may obtain a network fit that perfectly predicts the learning data yet fails to generalize to other data sets. One way of reducing the size of the parameter space is to alter the network topology so that some edges are removed; however, it is often not immediately apparent which edges should be eliminated. We propose a data-adaptive method of selecting an optimal network architecture using the Deletion/Substitution/Addition algorithm introduced in Sinisi and van der Laan (2004) and Molinaro and van der Laan (2004). Results of this approach in the regression case are presented on two simulated data sets and the diabetes data of Efron et al. (2002)." @default.
- W1569176717 created "2016-06-24" @default.
- W1569176717 creator A5018207168 @default.
- W1569176717 creator A5055204699 @default.
- W1569176717 creator A5081135395 @default.
- W1569176717 date "2005-01-01" @default.
- W1569176717 modified "2023-09-27" @default.
- W1569176717 title "Optimization of the Architecture of Neural Networks Using a Deletion/Substitution/Addition Algorithm" @default.
- W1569176717 cites W1966849089 @default.
- W1569176717 cites W2006783986 @default.
- W1569176717 cites W2025320861 @default.
- W1569176717 cites W2063978378 @default.
- W1569176717 cites W2065137527 @default.
- W1569176717 cites W2101895213 @default.
- W1569176717 cites W2102201073 @default.
- W1569176717 cites W2115262068 @default.
- W1569176717 cites W2117812871 @default.
- W1569176717 cites W2153187042 @default.
- W1569176717 cites W2166116275 @default.
- W1569176717 cites W2801830100 @default.
- W1569176717 cites W3085162807 @default.
- W1569176717 hasPublicationYear "2005" @default.
- W1569176717 type Work @default.
- W1569176717 sameAs 1569176717 @default.
- W1569176717 citedByCount "2" @default.
- W1569176717 crossrefType "journal-article" @default.
- W1569176717 hasAuthorship W1569176717A5018207168 @default.
- W1569176717 hasAuthorship W1569176717A5055204699 @default.
- W1569176717 hasAuthorship W1569176717A5081135395 @default.
- W1569176717 hasConcept C108010975 @default.
- W1569176717 hasConcept C11413529 @default.
- W1569176717 hasConcept C119857082 @default.
- W1569176717 hasConcept C154945302 @default.
- W1569176717 hasConcept C193415008 @default.
- W1569176717 hasConcept C199360897 @default.
- W1569176717 hasConcept C22019652 @default.
- W1569176717 hasConcept C2778220771 @default.
- W1569176717 hasConcept C33923547 @default.
- W1569176717 hasConcept C38652104 @default.
- W1569176717 hasConcept C41008148 @default.
- W1569176717 hasConcept C50644808 @default.
- W1569176717 hasConcept C6557445 @default.
- W1569176717 hasConcept C86803240 @default.
- W1569176717 hasConceptScore W1569176717C108010975 @default.
- W1569176717 hasConceptScore W1569176717C11413529 @default.
- W1569176717 hasConceptScore W1569176717C119857082 @default.
- W1569176717 hasConceptScore W1569176717C154945302 @default.
- W1569176717 hasConceptScore W1569176717C193415008 @default.
- W1569176717 hasConceptScore W1569176717C199360897 @default.
- W1569176717 hasConceptScore W1569176717C22019652 @default.
- W1569176717 hasConceptScore W1569176717C2778220771 @default.
- W1569176717 hasConceptScore W1569176717C33923547 @default.
- W1569176717 hasConceptScore W1569176717C38652104 @default.
- W1569176717 hasConceptScore W1569176717C41008148 @default.
- W1569176717 hasConceptScore W1569176717C50644808 @default.
- W1569176717 hasConceptScore W1569176717C6557445 @default.
- W1569176717 hasConceptScore W1569176717C86803240 @default.
- W1569176717 hasLocation W15691767171 @default.
- W1569176717 hasOpenAccess W1569176717 @default.
- W1569176717 hasPrimaryLocation W15691767171 @default.
- W1569176717 hasRelatedWork W141820839 @default.
- W1569176717 hasRelatedWork W2063806150 @default.
- W1569176717 hasRelatedWork W2097442613 @default.
- W1569176717 hasRelatedWork W2110663062 @default.
- W1569176717 hasRelatedWork W2129445095 @default.
- W1569176717 hasRelatedWork W2133841026 @default.
- W1569176717 hasRelatedWork W2149435637 @default.
- W1569176717 hasRelatedWork W2160757661 @default.
- W1569176717 hasRelatedWork W2163388317 @default.
- W1569176717 hasRelatedWork W2249917527 @default.
- W1569176717 hasRelatedWork W2369679720 @default.
- W1569176717 hasRelatedWork W2374283236 @default.
- W1569176717 hasRelatedWork W2377899885 @default.
- W1569176717 hasRelatedWork W2383950648 @default.
- W1569176717 hasRelatedWork W2390010325 @default.
- W1569176717 hasRelatedWork W2948059343 @default.
- W1569176717 hasRelatedWork W2965240995 @default.
- W1569176717 hasRelatedWork W3023893306 @default.
- W1569176717 hasRelatedWork W3090740184 @default.
- W1569176717 hasRelatedWork W36908706 @default.
- W1569176717 isParatext "false" @default.
- W1569176717 isRetracted "false" @default.
- W1569176717 magId "1569176717" @default.
- W1569176717 workType "article" @default.