Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569191683> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W1569191683 abstract "Future generation autonomous agents are expected to operate in remote and dangerous places like outer space, undersea, hazardous waste sites, and are therefore anticipated to be far more self-directed than today's existing agents. The ability of an agent to plan its own motion is pivotal to its autonomy. For over more than three decades, agent motion planning in general, and robot motion planning in particular, have attracted much research in various fields and have become central topics in autonomous agents and artificial intelligence. Although today the term ‘motion planning’ is considered to cover a wide variety of problems, we will use it for the problem of planning collision-free motions for an autonomous robot moving among obstacles. The necessity of planning the motions of autonomous agents originally arose in early 1970’s, when the first industrial robots were to perform automatic tasks of manipulation and navigation. Soon it was realized that the complexity of the robot motion planning problem is PSPACE-hard and NP-complete since the size of the solution space grows exponentially and gets extremely complicated, especially for high degrees of freedom (Canny, 1988). Many techniques have been developed for solving the robot motion planning problem, including the ‘Skeleton’ or ‘Roadmap’ approach (Choset et al., 2005). In this approach, the continuous workspace is mapped into a one-dimensional graph with vertices including the start and goal of the robot, and edges as paths between vertices. This graph is then searched to find a collision-free start-to-goal path. Visibility Graph is a type of roadmap which is the collection of lines in the free space connecting vertices of an object to those of another (Fig. 1(a)). There are O(n2) edges in the Visibility Graph, and it can be constructed in O(n2) time and space in 2D, where n is the number of vertices. Voronoi Diagram is another roadmap defined as the set of points equidistant from two or more objects (Fig. 1(b)). The Voronoi Diagram partitions the space into regions, where each region contains one object. For each point in a region, the object within the region is the closest to that point than any other object. There are only O(n) edges in the Voronoi Diagram, and it can be efficiently constructed in Ω(nlogn) time, where n is the number of objects (Hwang & Ahuja, 1992). When multiple moving robots share a common workspace, the motion planning task becomes even more difficult and cannot be performed for just one robot without considering others. In this kind of problems, while pursuing their individual (local) goals," @default.
- W1569191683 created "2016-06-24" @default.
- W1569191683 creator A5054792423 @default.
- W1569191683 creator A5059609145 @default.
- W1569191683 date "2011-01-30" @default.
- W1569191683 modified "2023-09-26" @default.
- W1569191683 title "Graph-Based Multi Robot Motion Planning: Feasibility and Structural Properties" @default.
- W1569191683 cites W101508493 @default.
- W1569191683 cites W1516027685 @default.
- W1569191683 cites W1521785144 @default.
- W1569191683 cites W1986164452 @default.
- W1569191683 cites W2004815408 @default.
- W1569191683 cites W2013317087 @default.
- W1569191683 cites W2048036606 @default.
- W1569191683 cites W2051626883 @default.
- W1569191683 cites W2083721544 @default.
- W1569191683 cites W2103838069 @default.
- W1569191683 cites W2135939055 @default.
- W1569191683 cites W2147526018 @default.
- W1569191683 cites W2798588639 @default.
- W1569191683 doi "https://doi.org/10.5772/12859" @default.
- W1569191683 hasPublicationYear "2011" @default.
- W1569191683 type Work @default.
- W1569191683 sameAs 1569191683 @default.
- W1569191683 citedByCount "0" @default.
- W1569191683 crossrefType "book-chapter" @default.
- W1569191683 hasAuthorship W1569191683A5054792423 @default.
- W1569191683 hasAuthorship W1569191683A5059609145 @default.
- W1569191683 hasBestOaLocation W15691916831 @default.
- W1569191683 hasConcept C132525143 @default.
- W1569191683 hasConcept C154945302 @default.
- W1569191683 hasConcept C31972630 @default.
- W1569191683 hasConcept C41008148 @default.
- W1569191683 hasConcept C80444323 @default.
- W1569191683 hasConcept C81074085 @default.
- W1569191683 hasConcept C90509273 @default.
- W1569191683 hasConceptScore W1569191683C132525143 @default.
- W1569191683 hasConceptScore W1569191683C154945302 @default.
- W1569191683 hasConceptScore W1569191683C31972630 @default.
- W1569191683 hasConceptScore W1569191683C41008148 @default.
- W1569191683 hasConceptScore W1569191683C80444323 @default.
- W1569191683 hasConceptScore W1569191683C81074085 @default.
- W1569191683 hasConceptScore W1569191683C90509273 @default.
- W1569191683 hasLocation W15691916831 @default.
- W1569191683 hasLocation W15691916832 @default.
- W1569191683 hasOpenAccess W1569191683 @default.
- W1569191683 hasPrimaryLocation W15691916831 @default.
- W1569191683 hasRelatedWork W1891287906 @default.
- W1569191683 hasRelatedWork W1969923398 @default.
- W1569191683 hasRelatedWork W2036807459 @default.
- W1569191683 hasRelatedWork W2061090284 @default.
- W1569191683 hasRelatedWork W2075753041 @default.
- W1569191683 hasRelatedWork W2125579716 @default.
- W1569191683 hasRelatedWork W2684384989 @default.
- W1569191683 hasRelatedWork W2772917594 @default.
- W1569191683 hasRelatedWork W3094181197 @default.
- W1569191683 hasRelatedWork W4236636304 @default.
- W1569191683 isParatext "false" @default.
- W1569191683 isRetracted "false" @default.
- W1569191683 magId "1569191683" @default.
- W1569191683 workType "book-chapter" @default.