Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569207601> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W1569207601 endingPage "86" @default.
- W1569207601 startingPage "76" @default.
- W1569207601 abstract "Predicting structural deterioration of drainage pipes for storm water runoff is an important part of drainage maintenance programs. The structural deterioration is affected by various factors such as pipe size, age and soil type, among other variables and is defined using three condition states, with one being good, two being fair and three being poor over the lifetime of pipes. In this paper, two prediction models using ordered probit (OPPM) and neuro-fuzzy (NFPM) are developed for predicting the structural condition of urban drainage pipes. These two models are compared against each other by using the Goodness-of-fit test and two scalar performance measures, namely, overall success rate (OSR) and false negative rate (FNR). The predictive performance of OPPM might be affected by the noisy data owing to the nature of its statistical structure. The noisy data are inherent with the condition monitoring and assessment of the structural deterioration (i.e. collapsing into three condition states) and the vagueness of the input factors. This is what the adaptive neuro-fuzzy inference system (ANFIS) reportedly can handle well. The ANFIS is based on two powerful artificial intelligence techniques, multi-valued logical system (fuzzy logic) to account for noisy data and neural networks to map input factors to accurate outputs (i.e. structural condition). A case study was used to demonstrate the applicability of OPPM and NFPM. The results showed that the NFPM was more suitable for modelling structural deterioration of storm water pipes as substantiated by the Goodness-of-fit test. The NFPM consistently outperformed the OPPM in the train and test data set, however while these results are promising, further improvement is required before it can be used as a predictive model without additional filed expert opinion and confirmation." @default.
- W1569207601 created "2016-06-24" @default.
- W1569207601 creator A5007336391 @default.
- W1569207601 creator A5038361205 @default.
- W1569207601 creator A5060250796 @default.
- W1569207601 date "2008-01-01" @default.
- W1569207601 modified "2023-09-27" @default.
- W1569207601 title "Prediction Models for Structural Deterioration of Urban Drainage Pipes Using Ordered Probit and Neuro-fuzzy Techniques" @default.
- W1569207601 hasPublicationYear "2008" @default.
- W1569207601 type Work @default.
- W1569207601 sameAs 1569207601 @default.
- W1569207601 citedByCount "0" @default.
- W1569207601 crossrefType "book-chapter" @default.
- W1569207601 hasAuthorship W1569207601A5007336391 @default.
- W1569207601 hasAuthorship W1569207601A5038361205 @default.
- W1569207601 hasAuthorship W1569207601A5060250796 @default.
- W1569207601 hasConcept C105795698 @default.
- W1569207601 hasConcept C119857082 @default.
- W1569207601 hasConcept C124101348 @default.
- W1569207601 hasConcept C127413603 @default.
- W1569207601 hasConcept C132480984 @default.
- W1569207601 hasConcept C154945302 @default.
- W1569207601 hasConcept C186108316 @default.
- W1569207601 hasConcept C195975749 @default.
- W1569207601 hasConcept C33923547 @default.
- W1569207601 hasConcept C41008148 @default.
- W1569207601 hasConcept C50644808 @default.
- W1569207601 hasConcept C58166 @default.
- W1569207601 hasConceptScore W1569207601C105795698 @default.
- W1569207601 hasConceptScore W1569207601C119857082 @default.
- W1569207601 hasConceptScore W1569207601C124101348 @default.
- W1569207601 hasConceptScore W1569207601C127413603 @default.
- W1569207601 hasConceptScore W1569207601C132480984 @default.
- W1569207601 hasConceptScore W1569207601C154945302 @default.
- W1569207601 hasConceptScore W1569207601C186108316 @default.
- W1569207601 hasConceptScore W1569207601C195975749 @default.
- W1569207601 hasConceptScore W1569207601C33923547 @default.
- W1569207601 hasConceptScore W1569207601C41008148 @default.
- W1569207601 hasConceptScore W1569207601C50644808 @default.
- W1569207601 hasConceptScore W1569207601C58166 @default.
- W1569207601 hasLocation W15692076011 @default.
- W1569207601 hasOpenAccess W1569207601 @default.
- W1569207601 hasPrimaryLocation W15692076011 @default.
- W1569207601 hasRelatedWork W1557275779 @default.
- W1569207601 hasRelatedWork W1865387786 @default.
- W1569207601 hasRelatedWork W194452687 @default.
- W1569207601 hasRelatedWork W1970762958 @default.
- W1569207601 hasRelatedWork W2060467747 @default.
- W1569207601 hasRelatedWork W2071917018 @default.
- W1569207601 hasRelatedWork W2076201204 @default.
- W1569207601 hasRelatedWork W2131570052 @default.
- W1569207601 hasRelatedWork W2152005572 @default.
- W1569207601 hasRelatedWork W2219483656 @default.
- W1569207601 hasRelatedWork W2349808106 @default.
- W1569207601 hasRelatedWork W2354659568 @default.
- W1569207601 hasRelatedWork W2770503480 @default.
- W1569207601 hasRelatedWork W2792586183 @default.
- W1569207601 hasRelatedWork W3017140157 @default.
- W1569207601 hasRelatedWork W3099487920 @default.
- W1569207601 hasRelatedWork W3109637707 @default.
- W1569207601 hasRelatedWork W928753837 @default.
- W1569207601 hasRelatedWork W1863092102 @default.
- W1569207601 hasRelatedWork W2185666729 @default.
- W1569207601 isParatext "false" @default.
- W1569207601 isRetracted "false" @default.
- W1569207601 magId "1569207601" @default.
- W1569207601 workType "book-chapter" @default.