Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569293859> ?p ?o ?g. }
- W1569293859 endingPage "9182" @default.
- W1569293859 startingPage "9170" @default.
- W1569293859 abstract "Differential sensing using synthetic receptors as mimics of the mammalian senses of taste and smell is a powerful approach for the analysis of complex mixtures. Herein, we report on the effectiveness of a cross-reactive, supramolecular, peptide-based sensing array in differentiating and predicting the composition of red wine blends. Fifteen blends of Cabernet Sauvignon, Merlot and Cabernet Franc, in addition to the mono varietals, were used in this investigation. Linear Discriminant Analysis (LDA) showed a clear differentiation of blends based on tannin concentration and composition where certain mono varietals like Cabernet Sauvignon seemed to contribute less to the overall characteristics of the blend. Partial Least Squares (PLS) Regression and cross validation were used to build a predictive model for the responses of the receptors to eleven binary blends and the three mono varietals. The optimized model was later used to predict the percentage of each mono varietal in an independent test set composted of four tri-blends with a 15% average error. A partial least square regression model using the mouth-feel and taste descriptive sensory attributes of the wine blends revealed a strong correlation of the receptors to perceived astringency, which is indicative of selective binding to polyphenols in wine." @default.
- W1569293859 created "2016-06-24" @default.
- W1569293859 creator A5005802459 @default.
- W1569293859 creator A5006897897 @default.
- W1569293859 creator A5008756415 @default.
- W1569293859 creator A5022801539 @default.
- W1569293859 creator A5028917739 @default.
- W1569293859 creator A5038190858 @default.
- W1569293859 creator A5048354339 @default.
- W1569293859 creator A5053708598 @default.
- W1569293859 creator A5066428999 @default.
- W1569293859 creator A5070755746 @default.
- W1569293859 creator A5072400052 @default.
- W1569293859 creator A5075779911 @default.
- W1569293859 creator A5077371704 @default.
- W1569293859 creator A5082528109 @default.
- W1569293859 creator A5090681599 @default.
- W1569293859 date "2015-05-20" @default.
- W1569293859 modified "2023-10-17" @default.
- W1569293859 title "Predicting the Composition of Red Wine Blends Using an Array of Multicomponent Peptide-Based Sensors" @default.
- W1569293859 cites W1764291845 @default.
- W1569293859 cites W1973758597 @default.
- W1569293859 cites W1973863064 @default.
- W1569293859 cites W1975799139 @default.
- W1569293859 cites W1981887226 @default.
- W1569293859 cites W1987852761 @default.
- W1569293859 cites W1999049104 @default.
- W1569293859 cites W2001695110 @default.
- W1569293859 cites W2003512849 @default.
- W1569293859 cites W2008299445 @default.
- W1569293859 cites W2008360463 @default.
- W1569293859 cites W2039139441 @default.
- W1569293859 cites W2045588898 @default.
- W1569293859 cites W2050981629 @default.
- W1569293859 cites W2060143361 @default.
- W1569293859 cites W2061504759 @default.
- W1569293859 cites W2062099104 @default.
- W1569293859 cites W2067843472 @default.
- W1569293859 cites W2068558723 @default.
- W1569293859 cites W2092911960 @default.
- W1569293859 cites W2118054565 @default.
- W1569293859 cites W2118560383 @default.
- W1569293859 cites W2151882297 @default.
- W1569293859 doi "https://doi.org/10.3390/molecules20059170" @default.
- W1569293859 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6272560" @default.
- W1569293859 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26007178" @default.
- W1569293859 hasPublicationYear "2015" @default.
- W1569293859 type Work @default.
- W1569293859 sameAs 1569293859 @default.
- W1569293859 citedByCount "23" @default.
- W1569293859 countsByYear W15692938592016 @default.
- W1569293859 countsByYear W15692938592017 @default.
- W1569293859 countsByYear W15692938592018 @default.
- W1569293859 countsByYear W15692938592019 @default.
- W1569293859 countsByYear W15692938592020 @default.
- W1569293859 countsByYear W15692938592021 @default.
- W1569293859 countsByYear W15692938592022 @default.
- W1569293859 countsByYear W15692938592023 @default.
- W1569293859 crossrefType "journal-article" @default.
- W1569293859 hasAuthorship W1569293859A5005802459 @default.
- W1569293859 hasAuthorship W1569293859A5006897897 @default.
- W1569293859 hasAuthorship W1569293859A5008756415 @default.
- W1569293859 hasAuthorship W1569293859A5022801539 @default.
- W1569293859 hasAuthorship W1569293859A5028917739 @default.
- W1569293859 hasAuthorship W1569293859A5038190858 @default.
- W1569293859 hasAuthorship W1569293859A5048354339 @default.
- W1569293859 hasAuthorship W1569293859A5053708598 @default.
- W1569293859 hasAuthorship W1569293859A5066428999 @default.
- W1569293859 hasAuthorship W1569293859A5070755746 @default.
- W1569293859 hasAuthorship W1569293859A5072400052 @default.
- W1569293859 hasAuthorship W1569293859A5075779911 @default.
- W1569293859 hasAuthorship W1569293859A5077371704 @default.
- W1569293859 hasAuthorship W1569293859A5082528109 @default.
- W1569293859 hasAuthorship W1569293859A5090681599 @default.
- W1569293859 hasBestOaLocation W15692938591 @default.
- W1569293859 hasConcept C105795698 @default.
- W1569293859 hasConcept C138885662 @default.
- W1569293859 hasConcept C185592680 @default.
- W1569293859 hasConcept C186060115 @default.
- W1569293859 hasConcept C22354355 @default.
- W1569293859 hasConcept C2778004101 @default.
- W1569293859 hasConcept C2779281246 @default.
- W1569293859 hasConcept C2780309462 @default.
- W1569293859 hasConcept C31903555 @default.
- W1569293859 hasConcept C33923547 @default.
- W1569293859 hasConcept C40231798 @default.
- W1569293859 hasConcept C41895202 @default.
- W1569293859 hasConcept C43617362 @default.
- W1569293859 hasConcept C48921125 @default.
- W1569293859 hasConcept C55493867 @default.
- W1569293859 hasConcept C55952523 @default.
- W1569293859 hasConcept C70899900 @default.
- W1569293859 hasConcept C86803240 @default.
- W1569293859 hasConcept C8868529 @default.
- W1569293859 hasConceptScore W1569293859C105795698 @default.
- W1569293859 hasConceptScore W1569293859C138885662 @default.
- W1569293859 hasConceptScore W1569293859C185592680 @default.
- W1569293859 hasConceptScore W1569293859C186060115 @default.