Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569321962> ?p ?o ?g. }
- W1569321962 endingPage "175" @default.
- W1569321962 startingPage "170" @default.
- W1569321962 abstract "Pre-deployment identification of soldiers at risk for long-term posttraumatic stress psychopathology after home coming is important to guide decisions about deployment. Early post-deployment identification can direct early interventions to those in need and thereby prevents the development of chronic psychopathology. Both hold significant public health benefits given large numbers of deployed soldiers, but has so far not been achieved. Here, we aim to assess the potential for pre- and early post-deployment prediction of resilience or posttraumatic stress development in soldiers by application of machine learning (ML) methods.ML feature selection and prediction algorithms were applied to a prospective cohort of 561 Danish soldiers deployed to Afghanistan in 2009 to identify unique risk indicators and forecast long-term posttraumatic stress responses.Robust pre- and early postdeployment risk indicators were identified, and included individual PTSD symptoms as well as total level of PTSD symptoms, previous trauma and treatment, negative emotions, and thought suppression. The predictive performance of these risk indicators combined was assessed by cross-validation. Together, these indicators forecasted long term posttraumatic stress responses with high accuracy (pre-deployment: AUC = 0.84 (95% CI = 0.81-0.87), post-deployment: AUC = 0.88 (95% CI = 0.85-0.91)).This study utilized a previously collected data set and was therefore not designed to exhaust the potential of ML methods. Further, the study relied solely on self-reported measures.Pre-deployment and early post-deployment identification of risk for long-term posttraumatic psychopathology are feasible and could greatly reduce the public health costs of war." @default.
- W1569321962 created "2016-06-24" @default.
- W1569321962 creator A5000839711 @default.
- W1569321962 creator A5027728817 @default.
- W1569321962 creator A5030288228 @default.
- W1569321962 creator A5035609813 @default.
- W1569321962 creator A5090530395 @default.
- W1569321962 date "2015-09-01" @default.
- W1569321962 modified "2023-10-03" @default.
- W1569321962 title "Early identification of posttraumatic stress following military deployment: Application of machine learning methods to a prospective study of Danish soldiers" @default.
- W1569321962 cites W150508985 @default.
- W1569321962 cites W1580713549 @default.
- W1569321962 cites W1824021844 @default.
- W1569321962 cites W1985730575 @default.
- W1569321962 cites W1987334230 @default.
- W1569321962 cites W1993000970 @default.
- W1569321962 cites W2030863659 @default.
- W1569321962 cites W2031187902 @default.
- W1569321962 cites W2041674474 @default.
- W1569321962 cites W2048091207 @default.
- W1569321962 cites W2051000959 @default.
- W1569321962 cites W2072833030 @default.
- W1569321962 cites W2075970420 @default.
- W1569321962 cites W2077086070 @default.
- W1569321962 cites W2079625253 @default.
- W1569321962 cites W2081956352 @default.
- W1569321962 cites W2083201121 @default.
- W1569321962 cites W2089436312 @default.
- W1569321962 cites W2147917457 @default.
- W1569321962 cites W2333942939 @default.
- W1569321962 cites W2970647926 @default.
- W1569321962 cites W4241300009 @default.
- W1569321962 cites W4254108335 @default.
- W1569321962 cites W4292994367 @default.
- W1569321962 doi "https://doi.org/10.1016/j.jad.2015.05.057" @default.
- W1569321962 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26093830" @default.
- W1569321962 hasPublicationYear "2015" @default.
- W1569321962 type Work @default.
- W1569321962 sameAs 1569321962 @default.
- W1569321962 citedByCount "57" @default.
- W1569321962 countsByYear W15693219622015 @default.
- W1569321962 countsByYear W15693219622016 @default.
- W1569321962 countsByYear W15693219622017 @default.
- W1569321962 countsByYear W15693219622018 @default.
- W1569321962 countsByYear W15693219622019 @default.
- W1569321962 countsByYear W15693219622020 @default.
- W1569321962 countsByYear W15693219622021 @default.
- W1569321962 countsByYear W15693219622022 @default.
- W1569321962 countsByYear W15693219622023 @default.
- W1569321962 crossrefType "journal-article" @default.
- W1569321962 hasAuthorship W1569321962A5000839711 @default.
- W1569321962 hasAuthorship W1569321962A5027728817 @default.
- W1569321962 hasAuthorship W1569321962A5030288228 @default.
- W1569321962 hasAuthorship W1569321962A5035609813 @default.
- W1569321962 hasAuthorship W1569321962A5090530395 @default.
- W1569321962 hasConcept C105339364 @default.
- W1569321962 hasConcept C111919701 @default.
- W1569321962 hasConcept C118552586 @default.
- W1569321962 hasConcept C123273963 @default.
- W1569321962 hasConcept C126322002 @default.
- W1569321962 hasConcept C141071460 @default.
- W1569321962 hasConcept C142724271 @default.
- W1569321962 hasConcept C15744967 @default.
- W1569321962 hasConcept C188816634 @default.
- W1569321962 hasConcept C201903717 @default.
- W1569321962 hasConcept C27415008 @default.
- W1569321962 hasConcept C2778080089 @default.
- W1569321962 hasConcept C41008148 @default.
- W1569321962 hasConcept C71924100 @default.
- W1569321962 hasConcept C72563966 @default.
- W1569321962 hasConceptScore W1569321962C105339364 @default.
- W1569321962 hasConceptScore W1569321962C111919701 @default.
- W1569321962 hasConceptScore W1569321962C118552586 @default.
- W1569321962 hasConceptScore W1569321962C123273963 @default.
- W1569321962 hasConceptScore W1569321962C126322002 @default.
- W1569321962 hasConceptScore W1569321962C141071460 @default.
- W1569321962 hasConceptScore W1569321962C142724271 @default.
- W1569321962 hasConceptScore W1569321962C15744967 @default.
- W1569321962 hasConceptScore W1569321962C188816634 @default.
- W1569321962 hasConceptScore W1569321962C201903717 @default.
- W1569321962 hasConceptScore W1569321962C27415008 @default.
- W1569321962 hasConceptScore W1569321962C2778080089 @default.
- W1569321962 hasConceptScore W1569321962C41008148 @default.
- W1569321962 hasConceptScore W1569321962C71924100 @default.
- W1569321962 hasConceptScore W1569321962C72563966 @default.
- W1569321962 hasLocation W15693219621 @default.
- W1569321962 hasLocation W15693219622 @default.
- W1569321962 hasOpenAccess W1569321962 @default.
- W1569321962 hasPrimaryLocation W15693219621 @default.
- W1569321962 hasRelatedWork W1532132786 @default.
- W1569321962 hasRelatedWork W2042664817 @default.
- W1569321962 hasRelatedWork W2075605069 @default.
- W1569321962 hasRelatedWork W2163392490 @default.
- W1569321962 hasRelatedWork W2750095015 @default.
- W1569321962 hasRelatedWork W3116131585 @default.
- W1569321962 hasRelatedWork W3176033318 @default.
- W1569321962 hasRelatedWork W4254169278 @default.
- W1569321962 hasRelatedWork W4281965648 @default.