Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569374747> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1569374747 endingPage "309" @default.
- W1569374747 startingPage "300" @default.
- W1569374747 abstract "Given a set S of n points in the plane and an angle θ, a set of b+1 parallel lines l 0, l 1,...,l b of slope θ (b is fixed) is called a θ-cut of S if l 0, l 1,...,l b are equally spaced and all the points of S lie between l 0 and l b . The regions between two consecutive lines and called buckets. In this paper we consider the problem of finding an optimal θ-cut such that points are distributed into b buckets most uniformly, in other words, such that the maximum number of points to be included in one bucket is minimized. Comer and O'Donnell considered the problem under a constraint that l 0 and l b are two supporting lines of S and presented an algorithm which runs in O(bn 2 log bn) time and O(n 2+bn) space. In this paper we present two linear-space algorithm for the problem based on duality transformation. One runs in O(n 2+K log n+bn) time, where K is the number of intersections in the transformed plane. It is shown that K=O(n 2+bn). The other is advantageous if b< $$sqrt n$$ and runs in O(b 0.610 n 1.695+bn+K log n) time. Those are improvement of Comer and O'Donnell's algorithm both in time and space complexities. We also show that our algorithm can be extended to the case of buckets in the form of two-dimensional arrays. Then, we extend our algorithm so as to solve the unconstrained version of the problem (l 0 and l b may not be supporting lines of S) in polynomial time. First we consider the one-dimensional case and then apply the idea to the two-dimensional case. Especially, the one-dimensional case is important from a standpoint of application to hashing. The problem we consider is as follows: Given a set of n real numbers x 0, x 1,...,x n−1 (we assume that they are sorted and x 0=0 and x n−1=1 without loss of generality). Consider a hash function of the form h(x)=[x−L/w] mod m, where we assume that [0−L/w]=0 and [1−L/w]=K−1 and K and m are given integers. It is easily seen that the hash function is more flexible than the ordinary form h(x)=[K·x] mod m since the latter hash function corresponds to the one in which L and w are fixed to be 0 and 1/K, respectively." @default.
- W1569374747 created "2016-06-24" @default.
- W1569374747 creator A5031520565 @default.
- W1569374747 creator A5038413661 @default.
- W1569374747 date "1990-01-01" @default.
- W1569374747 modified "2023-09-26" @default.
- W1569374747 title "Algorithms for projecting points to give the most uniform distribution with applications to hashing" @default.
- W1569374747 cites W1874694348 @default.
- W1569374747 cites W1967443570 @default.
- W1569374747 cites W2006673860 @default.
- W1569374747 cites W2034294857 @default.
- W1569374747 cites W2038730428 @default.
- W1569374747 cites W2064098750 @default.
- W1569374747 cites W2068208816 @default.
- W1569374747 cites W2115184126 @default.
- W1569374747 cites W2911302472 @default.
- W1569374747 cites W4244897565 @default.
- W1569374747 cites W4300640952 @default.
- W1569374747 doi "https://doi.org/10.1007/3-540-52921-7_79" @default.
- W1569374747 hasPublicationYear "1990" @default.
- W1569374747 type Work @default.
- W1569374747 sameAs 1569374747 @default.
- W1569374747 citedByCount "1" @default.
- W1569374747 crossrefType "book-chapter" @default.
- W1569374747 hasAuthorship W1569374747A5031520565 @default.
- W1569374747 hasAuthorship W1569374747A5038413661 @default.
- W1569374747 hasConcept C110121322 @default.
- W1569374747 hasConcept C111919701 @default.
- W1569374747 hasConcept C11413529 @default.
- W1569374747 hasConcept C114614502 @default.
- W1569374747 hasConcept C118615104 @default.
- W1569374747 hasConcept C134306372 @default.
- W1569374747 hasConcept C176370821 @default.
- W1569374747 hasConcept C177264268 @default.
- W1569374747 hasConcept C17825722 @default.
- W1569374747 hasConcept C199360897 @default.
- W1569374747 hasConcept C2524010 @default.
- W1569374747 hasConcept C2778572836 @default.
- W1569374747 hasConcept C33923547 @default.
- W1569374747 hasConcept C38652104 @default.
- W1569374747 hasConcept C41008148 @default.
- W1569374747 hasConcept C99138194 @default.
- W1569374747 hasConceptScore W1569374747C110121322 @default.
- W1569374747 hasConceptScore W1569374747C111919701 @default.
- W1569374747 hasConceptScore W1569374747C11413529 @default.
- W1569374747 hasConceptScore W1569374747C114614502 @default.
- W1569374747 hasConceptScore W1569374747C118615104 @default.
- W1569374747 hasConceptScore W1569374747C134306372 @default.
- W1569374747 hasConceptScore W1569374747C176370821 @default.
- W1569374747 hasConceptScore W1569374747C177264268 @default.
- W1569374747 hasConceptScore W1569374747C17825722 @default.
- W1569374747 hasConceptScore W1569374747C199360897 @default.
- W1569374747 hasConceptScore W1569374747C2524010 @default.
- W1569374747 hasConceptScore W1569374747C2778572836 @default.
- W1569374747 hasConceptScore W1569374747C33923547 @default.
- W1569374747 hasConceptScore W1569374747C38652104 @default.
- W1569374747 hasConceptScore W1569374747C41008148 @default.
- W1569374747 hasConceptScore W1569374747C99138194 @default.
- W1569374747 hasLocation W15693747471 @default.
- W1569374747 hasOpenAccess W1569374747 @default.
- W1569374747 hasPrimaryLocation W15693747471 @default.
- W1569374747 hasRelatedWork W2077526997 @default.
- W1569374747 hasRelatedWork W2131679974 @default.
- W1569374747 hasRelatedWork W2385431910 @default.
- W1569374747 hasRelatedWork W2950126562 @default.
- W1569374747 hasRelatedWork W2952367104 @default.
- W1569374747 hasRelatedWork W3013698823 @default.
- W1569374747 hasRelatedWork W3083579866 @default.
- W1569374747 hasRelatedWork W3124533842 @default.
- W1569374747 hasRelatedWork W4287823794 @default.
- W1569374747 hasRelatedWork W1986094965 @default.
- W1569374747 isParatext "false" @default.
- W1569374747 isRetracted "false" @default.
- W1569374747 magId "1569374747" @default.
- W1569374747 workType "book-chapter" @default.