Matches in SemOpenAlex for { <https://semopenalex.org/work/W15694036> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W15694036 endingPage "6" @default.
- W15694036 startingPage "181" @default.
- W15694036 abstract "Missing data is a common feature of large data sets in general and medical data sets in particular. Depending on the goal of statistical analysis, various techniques can be used to tackle this problem. Imputation methods consist in substituting the missing values with plausible or predicted values so that the completed data can then be analysed with any chosen data mining procedure. In this work, we study imputation in the context of multivariate data and we evaluate a number of methods which can be used by today's standard statistical software packages. Imputation using multivariate classification, multiple imputation and imputation by factorial analysis are compared using simulated data and a large medical database (from the diabetes field) with numerous missing values. Our main result is to provide a control chart for assessing data quality after the imputation process. To this end, we developed an algorithm for which the input is a set of parameters describing the underlying data (e.g., covariance matrix, distribution) and the output is a chart which plots the change in the prediction error with respect to the proportion of missing values. The chart is built by means of an iterative algorithm involving four steps: (1) a sample of simulated data is drawn by using the input parameters; (2) missing values are randomly generated; (3) an imputation method is used to fill in the missing data and (4) the prediction error is computed. Steps 1 to 4 are repeated in order to estimate the distribution of the prediction error. The control chart was established for the 3 imputation methods studied here, assuming a multivariate normal distribution of data. The use of this tool on a large medical database was then investigated. We show how the control chart can be used to assess the quality of the imputation process in the pre-processing step upstream of data mining procedures." @default.
- W15694036 created "2016-06-24" @default.
- W15694036 creator A5000472232 @default.
- W15694036 creator A5005205127 @default.
- W15694036 creator A5012322676 @default.
- W15694036 creator A5065620655 @default.
- W15694036 date "2005-01-01" @default.
- W15694036 modified "2023-09-23" @default.
- W15694036 title "Tools for statistical analysis with missing data: application to a large medical database." @default.
- W15694036 cites W1532319109 @default.
- W15694036 cites W1594031697 @default.
- W15694036 cites W1963654454 @default.
- W15694036 cites W2001619934 @default.
- W15694036 cites W2044758663 @default.
- W15694036 cites W2059652746 @default.
- W15694036 cites W2076395872 @default.
- W15694036 cites W2118502261 @default.
- W15694036 cites W2123935149 @default.
- W15694036 cites W2172074277 @default.
- W15694036 cites W2208944982 @default.
- W15694036 cites W2336226269 @default.
- W15694036 cites W2477400917 @default.
- W15694036 cites W2776259474 @default.
- W15694036 cites W3085162807 @default.
- W15694036 cites W53754145 @default.
- W15694036 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16160256" @default.
- W15694036 hasPublicationYear "2005" @default.
- W15694036 type Work @default.
- W15694036 sameAs 15694036 @default.
- W15694036 citedByCount "5" @default.
- W15694036 countsByYear W156940362014 @default.
- W15694036 countsByYear W156940362015 @default.
- W15694036 crossrefType "journal-article" @default.
- W15694036 hasAuthorship W15694036A5000472232 @default.
- W15694036 hasAuthorship W15694036A5005205127 @default.
- W15694036 hasAuthorship W15694036A5012322676 @default.
- W15694036 hasAuthorship W15694036A5065620655 @default.
- W15694036 hasConcept C105795698 @default.
- W15694036 hasConcept C111919701 @default.
- W15694036 hasConcept C119857082 @default.
- W15694036 hasConcept C124101348 @default.
- W15694036 hasConcept C154945302 @default.
- W15694036 hasConcept C161584116 @default.
- W15694036 hasConcept C196985124 @default.
- W15694036 hasConcept C33923547 @default.
- W15694036 hasConcept C41008148 @default.
- W15694036 hasConcept C58041806 @default.
- W15694036 hasConcept C58489278 @default.
- W15694036 hasConcept C9357733 @default.
- W15694036 hasConcept C98045186 @default.
- W15694036 hasConceptScore W15694036C105795698 @default.
- W15694036 hasConceptScore W15694036C111919701 @default.
- W15694036 hasConceptScore W15694036C119857082 @default.
- W15694036 hasConceptScore W15694036C124101348 @default.
- W15694036 hasConceptScore W15694036C154945302 @default.
- W15694036 hasConceptScore W15694036C161584116 @default.
- W15694036 hasConceptScore W15694036C196985124 @default.
- W15694036 hasConceptScore W15694036C33923547 @default.
- W15694036 hasConceptScore W15694036C41008148 @default.
- W15694036 hasConceptScore W15694036C58041806 @default.
- W15694036 hasConceptScore W15694036C58489278 @default.
- W15694036 hasConceptScore W15694036C9357733 @default.
- W15694036 hasConceptScore W15694036C98045186 @default.
- W15694036 hasLocation W156940361 @default.
- W15694036 hasOpenAccess W15694036 @default.
- W15694036 hasPrimaryLocation W156940361 @default.
- W15694036 hasRelatedWork W1960517758 @default.
- W15694036 hasRelatedWork W1973315244 @default.
- W15694036 hasRelatedWork W2136407506 @default.
- W15694036 hasRelatedWork W2146067216 @default.
- W15694036 hasRelatedWork W2146944094 @default.
- W15694036 hasRelatedWork W2173000213 @default.
- W15694036 hasRelatedWork W2355798180 @default.
- W15694036 hasRelatedWork W2364157200 @default.
- W15694036 hasRelatedWork W2905878152 @default.
- W15694036 hasRelatedWork W2912911389 @default.
- W15694036 hasRelatedWork W2913233426 @default.
- W15694036 hasRelatedWork W2922390170 @default.
- W15694036 hasRelatedWork W2937146924 @default.
- W15694036 hasRelatedWork W2952484804 @default.
- W15694036 hasRelatedWork W3011327475 @default.
- W15694036 hasRelatedWork W3023250003 @default.
- W15694036 hasRelatedWork W3126613469 @default.
- W15694036 hasRelatedWork W3132651209 @default.
- W15694036 hasRelatedWork W3209607133 @default.
- W15694036 hasRelatedWork W99824780 @default.
- W15694036 hasVolume "116" @default.
- W15694036 isParatext "false" @default.
- W15694036 isRetracted "false" @default.
- W15694036 magId "15694036" @default.
- W15694036 workType "article" @default.