Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569405867> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W1569405867 abstract "State estimation over communication networks is in use by many robotic applications in industry, in defense systems, as well as in several exploration and surveillance tasks. The incorporation of a communication network in the control loop has enabled to perform multi-sensor fusion and distributed information processing, thus improving significantly the autonomy and reliability of robotic systems (Medeiros et al., 2008), (Olfati-Saber, 2006), (Watanabe & Tzafestas, 1992). It has been shown that scalable distributed state estimation can be achieved for robotic models, when the measurements are linear functions of the state and the associated process andmeasurement noise models follow aGaussian distribution (Mahler, 2007), (Nettleton et al., 2003). The results have been also extended to the case of nonlinear non-Gaussian dynamical systems (Rigatos, 2010a), (Makarenko & Durrant-Whyte, 2006). An issue which is associated to the implementation of such networked control systems is how to compensate for randomdelays and packet losses so as to enhance the accuracy of estimation and consequently to improve the stability of the control loop. The idea of incorporating delayed measurements within a Kalman Filter framework is a possible solution for the compensation of network-induced delays and packet losses, and is also known as update with out-of-sequence measurements (Bar Shalom, 2002). The solution proposed in (Bar Shalom, 2002) is optimal under the assumption that the delayed measurement was processed within the last sampling interval (one-step-lag problem). There have been also some attempts to extend these results to nonlinear state estimation (Golapalakrishnan et al., 2011), (Jia et al., 2008). More recently there has been research effort in the redesign of distributed Kalman Filtering algorithms for linear systems so as to eliminate the effects of delays in measurement transmissions and packet drops, while also alleviating the one-step-lag assumption (Xia et al., 2009). This chapter presents an approach to distributed state estimation-based control of nonlinear systems, capable of incorporating delayed measurements in the estimation algorithm while being also robust to packet losses. First, the chapter examines the problem of distributed nonlinear filtering over a communication/sensors network, and the use of the estimated state vector in a control loop. As a possible filtering approach, the Extended Information Filter is proposed (Rigatos, 2010a). In the Extended Information Filter the local filters do not exchange rawmeasurements but send to an aggregation filter their local information matrices (local inverse covariance matrices which can be also associated to Fisher Information Matrices) and their associated Distributed Nonlinear Filtering Under Packet Drops and Variable Delays for Robotic Visual Servoing 5" @default.
- W1569405867 created "2016-06-24" @default.
- W1569405867 creator A5068059152 @default.
- W1569405867 date "2011-06-09" @default.
- W1569405867 modified "2023-10-18" @default.
- W1569405867 title "Distributed Nonlinear Filtering Under Packet Drops and Variable Delays for Robotic Visual Servoing" @default.
- W1569405867 cites W1537690864 @default.
- W1569405867 cites W1597202324 @default.
- W1569405867 cites W2010144331 @default.
- W1569405867 cites W2020873706 @default.
- W1569405867 cites W2025517931 @default.
- W1569405867 cites W2043938167 @default.
- W1569405867 cites W2048512874 @default.
- W1569405867 cites W2052094208 @default.
- W1569405867 cites W2100835337 @default.
- W1569405867 cites W2113441496 @default.
- W1569405867 cites W2121813417 @default.
- W1569405867 cites W2122458829 @default.
- W1569405867 cites W2128305149 @default.
- W1569405867 cites W2132695119 @default.
- W1569405867 cites W2132902886 @default.
- W1569405867 cites W2138896396 @default.
- W1569405867 cites W2139295716 @default.
- W1569405867 cites W2148625920 @default.
- W1569405867 cites W2151836956 @default.
- W1569405867 cites W2162218773 @default.
- W1569405867 cites W2165384535 @default.
- W1569405867 cites W2166607659 @default.
- W1569405867 cites W34992941 @default.
- W1569405867 doi "https://doi.org/10.5772/17460" @default.
- W1569405867 hasPublicationYear "2011" @default.
- W1569405867 type Work @default.
- W1569405867 sameAs 1569405867 @default.
- W1569405867 citedByCount "0" @default.
- W1569405867 crossrefType "book-chapter" @default.
- W1569405867 hasAuthorship W1569405867A5068059152 @default.
- W1569405867 hasBestOaLocation W15694058671 @default.
- W1569405867 hasConcept C10912380 @default.
- W1569405867 hasConcept C115961682 @default.
- W1569405867 hasConcept C121332964 @default.
- W1569405867 hasConcept C134306372 @default.
- W1569405867 hasConcept C154945302 @default.
- W1569405867 hasConcept C158379750 @default.
- W1569405867 hasConcept C158622935 @default.
- W1569405867 hasConcept C182365436 @default.
- W1569405867 hasConcept C2775924081 @default.
- W1569405867 hasConcept C31258907 @default.
- W1569405867 hasConcept C31972630 @default.
- W1569405867 hasConcept C33923547 @default.
- W1569405867 hasConcept C41008148 @default.
- W1569405867 hasConcept C47446073 @default.
- W1569405867 hasConcept C62520636 @default.
- W1569405867 hasConceptScore W1569405867C10912380 @default.
- W1569405867 hasConceptScore W1569405867C115961682 @default.
- W1569405867 hasConceptScore W1569405867C121332964 @default.
- W1569405867 hasConceptScore W1569405867C134306372 @default.
- W1569405867 hasConceptScore W1569405867C154945302 @default.
- W1569405867 hasConceptScore W1569405867C158379750 @default.
- W1569405867 hasConceptScore W1569405867C158622935 @default.
- W1569405867 hasConceptScore W1569405867C182365436 @default.
- W1569405867 hasConceptScore W1569405867C2775924081 @default.
- W1569405867 hasConceptScore W1569405867C31258907 @default.
- W1569405867 hasConceptScore W1569405867C31972630 @default.
- W1569405867 hasConceptScore W1569405867C33923547 @default.
- W1569405867 hasConceptScore W1569405867C41008148 @default.
- W1569405867 hasConceptScore W1569405867C47446073 @default.
- W1569405867 hasConceptScore W1569405867C62520636 @default.
- W1569405867 hasLocation W15694058671 @default.
- W1569405867 hasOpenAccess W1569405867 @default.
- W1569405867 hasPrimaryLocation W15694058671 @default.
- W1569405867 hasRelatedWork W165596340 @default.
- W1569405867 hasRelatedWork W2051826626 @default.
- W1569405867 hasRelatedWork W2082114066 @default.
- W1569405867 hasRelatedWork W2516826372 @default.
- W1569405867 hasRelatedWork W2775473286 @default.
- W1569405867 hasRelatedWork W286997960 @default.
- W1569405867 hasRelatedWork W4293869118 @default.
- W1569405867 hasRelatedWork W4366330678 @default.
- W1569405867 hasRelatedWork W2107326529 @default.
- W1569405867 hasRelatedWork W2152244067 @default.
- W1569405867 isParatext "false" @default.
- W1569405867 isRetracted "false" @default.
- W1569405867 magId "1569405867" @default.
- W1569405867 workType "book-chapter" @default.