Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569424996> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W1569424996 abstract "Magnetic iron oxide nanoparticles have attracted broad interests in many biomedical areas, such as magnetic resonance imaging (MRI) contrast enhancement, magnetic hyperthermia, magnetic bio-sensing, and cell labeling [1]. To avoid nanoparticle aggregation and enhance their colloidal stability, carboxylate surfactants are widely used as coating materials to form steric repulsions between nanoparticles [2]. Lauric acid is one of the classical carboxylate materials, and is already approved for use in pharmaceuticals and food industry, which makes it a very promising coating material for nanoparticles in biomedical application. [3] Various methods, like mechanical milling, microemulsion, co-precipitation, thermal decomposition, etc., have been widely attempted to prepare nanoparticles. However, it is reported that the synthesis route has great impact on the properties of nanoparticle products, such as aluminium oxide nanoparticles, cobalt ferrite nanoparticles, and so on [4, 5]. Therefore, it is worthwhile to investigate the effects of different synthesis methods on the properties of lauric acid coated magnetic iron oxide nanoparticles. The research outcome can enable the synthesis of magnetic nanoparticles with desired features. Here, lauric acid coated iron oxide nanoparticles (LAIONPs) were prepared through two methods, co-precipitation and thermal decomposition. The products were characterized by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), dynamic light scattering (DLS), thermo gravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The iron-oxide-core average size could be tuned from 9 nm (CP-1), 11 nm (CP-2) to 13 nm (CP-3) by using different stirring speed of 1200 rpm, 800 rpm, and 400 rpm, respectively in co-precipitation experiments, while the core average size could be adjusted from 7 nm (TD-1), 11 nm (TD-2) to 17 nm (TD-3) by following different heating process in thermal decomposition experiments. (Fig. 1) The nanoparticles obtained through thermal decomposition (LAIONPs-TD) showed more uniform sizes and morphologies than the ones got from co-precipitation (LAIONPs-CP). Higher mass ratio of lauric acid in TD samples than CP samples, as indicated in TGA results (Fig. 2a and 2b), implies higher surface cover density of lauric acid surfactant on LAIONPs-TD than LAIONPs-CP. All the six LAIONPs samples exhibited superparamagnetic behavior at room temperature (Fig. 2c and 2d). The saturated magnetization (M <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>s</sub> ) of LAIONPs increased as the particle size increased. Such a trend can be observed in the samples obtained through co-precipitation (CP-1, 54 emu/g; CP-2, 58 emu/g; and CP-3, 63 emu/g) and also in the samples obtained through thermal decomposition (TD-1, 53 emu/g; TD-2, 64 emu/g; TD-3, and 78 emu/g). For the LAIONPs with similar average core size of 11 nm, M <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>s</sub> value of TD-2 obtained by thermal decomposition (64 emu/g) was higher than CP-2 obtained by co-precipitation (58 emu/g). As shown in Fig. 2e, in colloidal solution with solvent of chloroform, smaller mean hydrodynamic sizes and narrower hydrodynamic size distributions were observed on IONPs-TD samples, compared with IONPs-CP samples. This work revealed the influences of two different synthesis methods on the core size, morphology, hydrodynamic size, surfactant coating mass ratio, and magnetic behavior of the final products. Our comparative study provides insights into the influence of synthesis conditions on the geometrical and magnetic properties of lauric acid coated iron oxide nanoparticles." @default.
- W1569424996 created "2016-06-24" @default.
- W1569424996 creator A5046846228 @default.
- W1569424996 creator A5050664984 @default.
- W1569424996 creator A5076535890 @default.
- W1569424996 date "2015-05-01" @default.
- W1569424996 modified "2023-10-01" @default.
- W1569424996 title "Effect of synthesis conditions on the physiochemical properties of lauric acid coated magnetite nanoparticles" @default.
- W1569424996 cites W1966948620 @default.
- W1569424996 cites W2017145478 @default.
- W1569424996 cites W2042622941 @default.
- W1569424996 cites W2071659125 @default.
- W1569424996 cites W2126346850 @default.
- W1569424996 doi "https://doi.org/10.1109/intmag.2015.7157343" @default.
- W1569424996 hasPublicationYear "2015" @default.
- W1569424996 type Work @default.
- W1569424996 sameAs 1569424996 @default.
- W1569424996 citedByCount "0" @default.
- W1569424996 crossrefType "proceedings-article" @default.
- W1569424996 hasAuthorship W1569424996A5046846228 @default.
- W1569424996 hasAuthorship W1569424996A5050664984 @default.
- W1569424996 hasAuthorship W1569424996A5076535890 @default.
- W1569424996 hasBestOaLocation W15694249962 @default.
- W1569424996 hasConcept C127413603 @default.
- W1569424996 hasConcept C14631669 @default.
- W1569424996 hasConcept C155672457 @default.
- W1569424996 hasConcept C159985019 @default.
- W1569424996 hasConcept C160434732 @default.
- W1569424996 hasConcept C160892712 @default.
- W1569424996 hasConcept C171250308 @default.
- W1569424996 hasConcept C178790620 @default.
- W1569424996 hasConcept C185592680 @default.
- W1569424996 hasConcept C191897082 @default.
- W1569424996 hasConcept C192562407 @default.
- W1569424996 hasConcept C26771246 @default.
- W1569424996 hasConcept C2777697756 @default.
- W1569424996 hasConcept C2778889443 @default.
- W1569424996 hasConcept C2781003072 @default.
- W1569424996 hasConcept C42360764 @default.
- W1569424996 hasConcept C543025807 @default.
- W1569424996 hasConcept C60100273 @default.
- W1569424996 hasConcept C87023908 @default.
- W1569424996 hasConceptScore W1569424996C127413603 @default.
- W1569424996 hasConceptScore W1569424996C14631669 @default.
- W1569424996 hasConceptScore W1569424996C155672457 @default.
- W1569424996 hasConceptScore W1569424996C159985019 @default.
- W1569424996 hasConceptScore W1569424996C160434732 @default.
- W1569424996 hasConceptScore W1569424996C160892712 @default.
- W1569424996 hasConceptScore W1569424996C171250308 @default.
- W1569424996 hasConceptScore W1569424996C178790620 @default.
- W1569424996 hasConceptScore W1569424996C185592680 @default.
- W1569424996 hasConceptScore W1569424996C191897082 @default.
- W1569424996 hasConceptScore W1569424996C192562407 @default.
- W1569424996 hasConceptScore W1569424996C26771246 @default.
- W1569424996 hasConceptScore W1569424996C2777697756 @default.
- W1569424996 hasConceptScore W1569424996C2778889443 @default.
- W1569424996 hasConceptScore W1569424996C2781003072 @default.
- W1569424996 hasConceptScore W1569424996C42360764 @default.
- W1569424996 hasConceptScore W1569424996C543025807 @default.
- W1569424996 hasConceptScore W1569424996C60100273 @default.
- W1569424996 hasConceptScore W1569424996C87023908 @default.
- W1569424996 hasLocation W15694249961 @default.
- W1569424996 hasLocation W15694249962 @default.
- W1569424996 hasOpenAccess W1569424996 @default.
- W1569424996 hasPrimaryLocation W15694249961 @default.
- W1569424996 hasRelatedWork W1569424996 @default.
- W1569424996 hasRelatedWork W2008411330 @default.
- W1569424996 hasRelatedWork W2064097251 @default.
- W1569424996 hasRelatedWork W2113425926 @default.
- W1569424996 hasRelatedWork W2806497775 @default.
- W1569424996 hasRelatedWork W3034965021 @default.
- W1569424996 hasRelatedWork W3131883679 @default.
- W1569424996 hasRelatedWork W3188304449 @default.
- W1569424996 hasRelatedWork W3212504572 @default.
- W1569424996 hasRelatedWork W3213469051 @default.
- W1569424996 isParatext "false" @default.
- W1569424996 isRetracted "false" @default.
- W1569424996 magId "1569424996" @default.
- W1569424996 workType "article" @default.