Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569489128> ?p ?o ?g. }
- W1569489128 endingPage "5982" @default.
- W1569489128 startingPage "5973" @default.
- W1569489128 abstract "Abstract This paper examines the capacity of the latest version of the International Reference Ionosphere (IRI‐2012) model in predicting the vertical total electron content (VTEC) variation over Uganda during a very low solar activity phase (2009) and a high solar activity (2012) phase. This has been carried out by comparing the ground‐based Global Positioning System (GPS) VTEC inferred from dual‐frequency GPS receivers installed at Entebbe (geographic latitude 0.038°N and longitude 32.44°E; geomagnetic latitude −9.53°N and longitude 104.06°E) and Mbarara (geographic latitude −0.60°N and longitude 30.74°E; geomagnetic latitude −10.02°N and longitude 102.36°E). In this work, the diurnal, monthly, and seasonal variations in the measured VTEC have been analyzed and compared with the VTEC derived from IRI‐2012 model. It has been shown that the lowest diurnal peak GPS‐VTEC values are observed in the June solstice months during both the low and the high solar activity phases. Similarly, the highest diurnal peak IRI‐2012 VTEC values are observed in equinoctial months during both phases. The variability of the VTEC in both the experimental and model is minimal nearly at 03:00 UT (06:00 LT) and maximal mostly between 10:00 and 13:00 UT (13:00–16:00 LT) during both phases. The diurnal highest peak modeled VTEC value observed during the high solar activity phase is almost twice larger than the diurnal highest peak modeled VTEC value depicted during the low solar activity phase. Moreover, the highest monthly mean hourly measured VTEC value observed in October during the high solar activity phase is larger by more than twice the corresponding highest monthly mean hourly measured VTEC value observed in November during the low solar activity phase. Similarly, the lowest monthly measured VTEC value observed in July during the high solar activity phase is larger by more than twice the corresponding lowest measured monthly VTEC value observed in the same month during the low solar activity phase. It has also been shown that the highest measured seasonal mean hourly VTEC values are observed in the December solstice and the March equinox, respectively, during the low and the high solar activity phases, while the corresponding lowest measured VTEC values are observed in the June solstice during both phases. The model prediction generally follows the monthly and seasonal variations of measured VTEC, with the highest and the lowest monthly values being observed in equinoctial and solstice months, respectively, during both phases. The overall results show that the modeled diurnal, monthly, and seasonal VTEC values are generally larger than those corresponding measured VTEC values observed during both the low and the high solar activity phases, with the largest deviations being observed during the low solar activity phase. Moreover, the model does not respond to the effects resulting from the storm. Hence, unlike the measured VTEC values, the modeled VTEC values are unaffected by the storm." @default.
- W1569489128 created "2016-06-24" @default.
- W1569489128 creator A5088001481 @default.
- W1569489128 date "2015-07-01" @default.
- W1569489128 modified "2023-10-03" @default.
- W1569489128 title "TEC prediction performance of IRI‐2012 model during a very low and a high solar activity phase over equatorial regions, Uganda" @default.
- W1569489128 cites W1652576145 @default.
- W1569489128 cites W1987326676 @default.
- W1569489128 cites W1992830971 @default.
- W1569489128 cites W1996453236 @default.
- W1569489128 cites W1998058676 @default.
- W1569489128 cites W2014650484 @default.
- W1569489128 cites W2015413647 @default.
- W1569489128 cites W2022032575 @default.
- W1569489128 cites W2025015372 @default.
- W1569489128 cites W2026339618 @default.
- W1569489128 cites W2033846964 @default.
- W1569489128 cites W2037090027 @default.
- W1569489128 cites W2046416564 @default.
- W1569489128 cites W2052055945 @default.
- W1569489128 cites W2061109162 @default.
- W1569489128 cites W2067310280 @default.
- W1569489128 cites W2076320454 @default.
- W1569489128 cites W2078705677 @default.
- W1569489128 cites W2080748393 @default.
- W1569489128 cites W2085101070 @default.
- W1569489128 cites W2087092418 @default.
- W1569489128 cites W2087757007 @default.
- W1569489128 cites W2096043541 @default.
- W1569489128 cites W2104938891 @default.
- W1569489128 cites W2122324396 @default.
- W1569489128 cites W2168987504 @default.
- W1569489128 doi "https://doi.org/10.1002/2015ja021203" @default.
- W1569489128 hasPublicationYear "2015" @default.
- W1569489128 type Work @default.
- W1569489128 sameAs 1569489128 @default.
- W1569489128 citedByCount "16" @default.
- W1569489128 countsByYear W15694891282016 @default.
- W1569489128 countsByYear W15694891282017 @default.
- W1569489128 countsByYear W15694891282019 @default.
- W1569489128 countsByYear W15694891282020 @default.
- W1569489128 countsByYear W15694891282021 @default.
- W1569489128 countsByYear W15694891282022 @default.
- W1569489128 crossrefType "journal-article" @default.
- W1569489128 hasAuthorship W1569489128A5088001481 @default.
- W1569489128 hasBestOaLocation W15694891281 @default.
- W1569489128 hasConcept C104317684 @default.
- W1569489128 hasConcept C108320909 @default.
- W1569489128 hasConcept C115260700 @default.
- W1569489128 hasConcept C116403925 @default.
- W1569489128 hasConcept C121332964 @default.
- W1569489128 hasConcept C122523270 @default.
- W1569489128 hasConcept C123046963 @default.
- W1569489128 hasConcept C127313418 @default.
- W1569489128 hasConcept C13280743 @default.
- W1569489128 hasConcept C165391973 @default.
- W1569489128 hasConcept C167678106 @default.
- W1569489128 hasConcept C176379880 @default.
- W1569489128 hasConcept C199635899 @default.
- W1569489128 hasConcept C205649164 @default.
- W1569489128 hasConcept C2776718089 @default.
- W1569489128 hasConcept C2777966019 @default.
- W1569489128 hasConcept C2780554747 @default.
- W1569489128 hasConcept C39432304 @default.
- W1569489128 hasConcept C49204034 @default.
- W1569489128 hasConcept C547475151 @default.
- W1569489128 hasConcept C55493867 @default.
- W1569489128 hasConcept C56456773 @default.
- W1569489128 hasConcept C62520636 @default.
- W1569489128 hasConcept C8058405 @default.
- W1569489128 hasConcept C86803240 @default.
- W1569489128 hasConcept C91586092 @default.
- W1569489128 hasConceptScore W1569489128C104317684 @default.
- W1569489128 hasConceptScore W1569489128C108320909 @default.
- W1569489128 hasConceptScore W1569489128C115260700 @default.
- W1569489128 hasConceptScore W1569489128C116403925 @default.
- W1569489128 hasConceptScore W1569489128C121332964 @default.
- W1569489128 hasConceptScore W1569489128C122523270 @default.
- W1569489128 hasConceptScore W1569489128C123046963 @default.
- W1569489128 hasConceptScore W1569489128C127313418 @default.
- W1569489128 hasConceptScore W1569489128C13280743 @default.
- W1569489128 hasConceptScore W1569489128C165391973 @default.
- W1569489128 hasConceptScore W1569489128C167678106 @default.
- W1569489128 hasConceptScore W1569489128C176379880 @default.
- W1569489128 hasConceptScore W1569489128C199635899 @default.
- W1569489128 hasConceptScore W1569489128C205649164 @default.
- W1569489128 hasConceptScore W1569489128C2776718089 @default.
- W1569489128 hasConceptScore W1569489128C2777966019 @default.
- W1569489128 hasConceptScore W1569489128C2780554747 @default.
- W1569489128 hasConceptScore W1569489128C39432304 @default.
- W1569489128 hasConceptScore W1569489128C49204034 @default.
- W1569489128 hasConceptScore W1569489128C547475151 @default.
- W1569489128 hasConceptScore W1569489128C55493867 @default.
- W1569489128 hasConceptScore W1569489128C56456773 @default.
- W1569489128 hasConceptScore W1569489128C62520636 @default.
- W1569489128 hasConceptScore W1569489128C8058405 @default.
- W1569489128 hasConceptScore W1569489128C86803240 @default.
- W1569489128 hasConceptScore W1569489128C91586092 @default.