Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569507287> ?p ?o ?g. }
- W1569507287 endingPage "326" @default.
- W1569507287 startingPage "301" @default.
- W1569507287 abstract "Detecting emotions in microblogs and social media posts has applications for industry, health, and security. Statistical, supervised automatic methods for emotion detection rely on text that is labeled for emotions, but such data are rare and available for only a handful of basic emotions. In this article, we show that emotion-word hashtags are good manual labels of emotions in tweets. We also propose a method to generate a large lexicon of word–emotion associations from this emotion-labeled tweet corpus. This is the first lexicon with real-valued word–emotion association scores. We begin with experiments for six basic emotions and show that the hashtag annotations are consistent and match with the annotations of trained judges. We also show how the extracted tweet corpus and word–emotion associations can be used to improve emotion classification accuracy in a different nontweet domain.Eminent psychologist Robert Plutchik had proposed that emotions have a relationship with personality traits. However, empirical experiments to establish this relationship have been stymied by the lack of comprehensive emotion resources. Because personality may be associated with any of the hundreds of emotions and because our hashtag approach scales easily to a large number of emotions, we extend our corpus by collecting tweets with hashtags pertaining to 585 fine emotions. Then, for the first time, we present experiments to show that fine emotion categories such as those of excitement, guilt, yearning, and admiration are useful in automatically detecting personality from text. Stream-of-consciousness essays and collections of Facebook posts marked with personality traits of the author are used as test sets." @default.
- W1569507287 created "2016-06-24" @default.
- W1569507287 creator A5033684482 @default.
- W1569507287 creator A5077738658 @default.
- W1569507287 date "2014-01-10" @default.
- W1569507287 modified "2023-10-02" @default.
- W1569507287 title "Using Hashtags to Capture Fine Emotion Categories from Tweets" @default.
- W1569507287 cites W113396932 @default.
- W1569507287 cites W135937222 @default.
- W1569507287 cites W150740463 @default.
- W1569507287 cites W1509901816 @default.
- W1569507287 cites W1513398909 @default.
- W1569507287 cites W1582416402 @default.
- W1569507287 cites W1836023969 @default.
- W1569507287 cites W1966797434 @default.
- W1569507287 cites W1972820248 @default.
- W1569507287 cites W1973871257 @default.
- W1569507287 cites W1989385699 @default.
- W1569507287 cites W2004905969 @default.
- W1569507287 cites W2007135085 @default.
- W1569507287 cites W2009642094 @default.
- W1569507287 cites W2012307708 @default.
- W1569507287 cites W2029283287 @default.
- W1569507287 cites W2034660268 @default.
- W1569507287 cites W2040467972 @default.
- W1569507287 cites W2052560757 @default.
- W1569507287 cites W2077947807 @default.
- W1569507287 cites W2105468141 @default.
- W1569507287 cites W2113166392 @default.
- W1569507287 cites W2117808614 @default.
- W1569507287 cites W2117945084 @default.
- W1569507287 cites W2133990480 @default.
- W1569507287 cites W2153635508 @default.
- W1569507287 cites W2153803020 @default.
- W1569507287 cites W2156140659 @default.
- W1569507287 cites W2166048187 @default.
- W1569507287 cites W2168493061 @default.
- W1569507287 cites W2168625136 @default.
- W1569507287 cites W2423024114 @default.
- W1569507287 cites W2489098841 @default.
- W1569507287 cites W4239045648 @default.
- W1569507287 doi "https://doi.org/10.1111/coin.12024" @default.
- W1569507287 hasPublicationYear "2014" @default.
- W1569507287 type Work @default.
- W1569507287 sameAs 1569507287 @default.
- W1569507287 citedByCount "305" @default.
- W1569507287 countsByYear W15695072872014 @default.
- W1569507287 countsByYear W15695072872015 @default.
- W1569507287 countsByYear W15695072872016 @default.
- W1569507287 countsByYear W15695072872017 @default.
- W1569507287 countsByYear W15695072872018 @default.
- W1569507287 countsByYear W15695072872019 @default.
- W1569507287 countsByYear W15695072872020 @default.
- W1569507287 countsByYear W15695072872021 @default.
- W1569507287 countsByYear W15695072872022 @default.
- W1569507287 countsByYear W15695072872023 @default.
- W1569507287 crossrefType "journal-article" @default.
- W1569507287 hasAuthorship W1569507287A5033684482 @default.
- W1569507287 hasAuthorship W1569507287A5077738658 @default.
- W1569507287 hasConcept C136764020 @default.
- W1569507287 hasConcept C138885662 @default.
- W1569507287 hasConcept C143275388 @default.
- W1569507287 hasConcept C154945302 @default.
- W1569507287 hasConcept C15744967 @default.
- W1569507287 hasConcept C187288502 @default.
- W1569507287 hasConcept C204321447 @default.
- W1569507287 hasConcept C206310091 @default.
- W1569507287 hasConcept C2776678506 @default.
- W1569507287 hasConcept C2777438025 @default.
- W1569507287 hasConcept C2778121359 @default.
- W1569507287 hasConcept C2865642 @default.
- W1569507287 hasConcept C2988148770 @default.
- W1569507287 hasConcept C41008148 @default.
- W1569507287 hasConcept C41895202 @default.
- W1569507287 hasConcept C518677369 @default.
- W1569507287 hasConcept C66402592 @default.
- W1569507287 hasConcept C77805123 @default.
- W1569507287 hasConcept C90805587 @default.
- W1569507287 hasConceptScore W1569507287C136764020 @default.
- W1569507287 hasConceptScore W1569507287C138885662 @default.
- W1569507287 hasConceptScore W1569507287C143275388 @default.
- W1569507287 hasConceptScore W1569507287C154945302 @default.
- W1569507287 hasConceptScore W1569507287C15744967 @default.
- W1569507287 hasConceptScore W1569507287C187288502 @default.
- W1569507287 hasConceptScore W1569507287C204321447 @default.
- W1569507287 hasConceptScore W1569507287C206310091 @default.
- W1569507287 hasConceptScore W1569507287C2776678506 @default.
- W1569507287 hasConceptScore W1569507287C2777438025 @default.
- W1569507287 hasConceptScore W1569507287C2778121359 @default.
- W1569507287 hasConceptScore W1569507287C2865642 @default.
- W1569507287 hasConceptScore W1569507287C2988148770 @default.
- W1569507287 hasConceptScore W1569507287C41008148 @default.
- W1569507287 hasConceptScore W1569507287C41895202 @default.
- W1569507287 hasConceptScore W1569507287C518677369 @default.
- W1569507287 hasConceptScore W1569507287C66402592 @default.
- W1569507287 hasConceptScore W1569507287C77805123 @default.
- W1569507287 hasConceptScore W1569507287C90805587 @default.
- W1569507287 hasIssue "2" @default.