Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569531314> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W1569531314 abstract "A number of compressor design and performan~e issues are influenced by the heat transfer process. Specifically, the compressor power, outlet temperature and amount of heat rejected to the cooling system all depend on the overall level of heat transfer inside the cylinder/piston assembly. The spatial distribution of the in-cylinder heat flux has an effect on component thermal loading and the resulting component temperatures, thermal stresses and distortions. Advanced compressor designs which approach and exceed current design limits require accurate assessment and prediction of heat transfer. New methodology has been developed, which includes gas-to-wall heat transfer calculations based on in-cylinder flow velocities and they can be used to predict heat transfer in compressors as a function of speed, pressure ratio, fluid properties and compressor valve and piston geometry. These are coupled with a finite element based calculation of heat conduction in the structure to provide simultaneous solution for component temperatures, providing a complete performance and thermal characterization of the compressor. INTRODUCTION Heat transfer is one of the. important processes which influence compressor design. One aspect of heat transfer concerns the loss of energy from the in-cylinder gases, which reduces the amount of piston work, and a parallel ~onsideration relates to durability of compressor components exposed to often high temperatures, In an optimum compressor design, the amount of cooling applied should be carefully considered. Optimization of compressor cooling requires the solution of the coupled problem of heat transfer between gases and walls and of heat conduction through the structure. The heat conduction portion of such a calculation can be carried out to acceptable accuracy, using finite element models (FEM). By contrast, gas-to-wall heat transfer modeling is still in a developmental state. This presents a major stumbling block, since the gas-to-wall heat transfer correlations are needed to provide the necessary boundary conditions for the FEM codes. The calculated t~mperature. field in the structure depends very critically on these boundary conditions, which must be well grounded in physics, if they are to , provide an accurate description of the heat flux rates. ·-~ ~!he model for in-cylinder convective heat transfer described below advances the. state-'ofzthe·art in that it gives a more accurate and more detailed description of the heat 'f-lux distribution in the cylinder. When used in a thermodynamic cycle model, it gi' a rnore accurate description of the effects of heat. tl;'ans£er on compressor perfor ce. Its use in conjunction with FEM codes improves the ability to address the issue -........._relat:ed to maximum material temperatures, temperatures of lubricated surfaces in sii~~ng contact, and of cooling load carried by coolant and by lubricating oil. rhe heat,...J:ransfer models. d~~cribed here have been implemented and are being used in a compreh~s+ve compressor simulation code lRIS-C, described in greater detail in a separate papei'ae th{s conterence-('1). PREVIOUS CONVECTIVE HJlAT TRAl!SFER MODELS :_ ,. The standard approach to modeling of convective heat-transfer is to assume that the heat flux may be described by an expression q(t) (1) '· where hg is heat transfer coefficient, rg is the gas b~mperature outside the thermal boundary layer, Tw is the wall temperature and A is the local surface area. Most of ~his work has been done in the engine context. The Iri'aJn differences between the varlous approa~hes stem from the definitions of h employed. Surveying the history of these approaches one finds that they can be ~ivided into thl;ee generations'' starting with simple dimensional models, to more fund~entally based dimensionles~" @default.
- W1569531314 created "2016-06-24" @default.
- W1569531314 creator A5064571422 @default.
- W1569531314 creator A5091311897 @default.
- W1569531314 date "1988-01-01" @default.
- W1569531314 modified "2023-09-27" @default.
- W1569531314 title "Heat Transfer and Component Temperature Prediction in Reciprocating Compressors" @default.
- W1569531314 hasPublicationYear "1988" @default.
- W1569531314 type Work @default.
- W1569531314 sameAs 1569531314 @default.
- W1569531314 citedByCount "8" @default.
- W1569531314 countsByYear W15695313142012 @default.
- W1569531314 countsByYear W15695313142013 @default.
- W1569531314 countsByYear W15695313142014 @default.
- W1569531314 crossrefType "journal-article" @default.
- W1569531314 hasAuthorship W1569531314A5064571422 @default.
- W1569531314 hasAuthorship W1569531314A5091311897 @default.
- W1569531314 hasConcept C120665830 @default.
- W1569531314 hasConcept C121332964 @default.
- W1569531314 hasConcept C127413603 @default.
- W1569531314 hasConcept C131097465 @default.
- W1569531314 hasConcept C159188206 @default.
- W1569531314 hasConcept C165699331 @default.
- W1569531314 hasConcept C172100665 @default.
- W1569531314 hasConcept C186937647 @default.
- W1569531314 hasConcept C192562407 @default.
- W1569531314 hasConcept C199524791 @default.
- W1569531314 hasConcept C203311528 @default.
- W1569531314 hasConcept C29700514 @default.
- W1569531314 hasConcept C50517652 @default.
- W1569531314 hasConcept C5395353 @default.
- W1569531314 hasConcept C57879066 @default.
- W1569531314 hasConcept C78519656 @default.
- W1569531314 hasConcept C97355855 @default.
- W1569531314 hasConceptScore W1569531314C120665830 @default.
- W1569531314 hasConceptScore W1569531314C121332964 @default.
- W1569531314 hasConceptScore W1569531314C127413603 @default.
- W1569531314 hasConceptScore W1569531314C131097465 @default.
- W1569531314 hasConceptScore W1569531314C159188206 @default.
- W1569531314 hasConceptScore W1569531314C165699331 @default.
- W1569531314 hasConceptScore W1569531314C172100665 @default.
- W1569531314 hasConceptScore W1569531314C186937647 @default.
- W1569531314 hasConceptScore W1569531314C192562407 @default.
- W1569531314 hasConceptScore W1569531314C199524791 @default.
- W1569531314 hasConceptScore W1569531314C203311528 @default.
- W1569531314 hasConceptScore W1569531314C29700514 @default.
- W1569531314 hasConceptScore W1569531314C50517652 @default.
- W1569531314 hasConceptScore W1569531314C5395353 @default.
- W1569531314 hasConceptScore W1569531314C57879066 @default.
- W1569531314 hasConceptScore W1569531314C78519656 @default.
- W1569531314 hasConceptScore W1569531314C97355855 @default.
- W1569531314 hasLocation W15695313141 @default.
- W1569531314 hasOpenAccess W1569531314 @default.
- W1569531314 hasPrimaryLocation W15695313141 @default.
- W1569531314 hasRelatedWork W1443478631 @default.
- W1569531314 hasRelatedWork W1496767757 @default.
- W1569531314 hasRelatedWork W1508602541 @default.
- W1569531314 hasRelatedWork W1526287147 @default.
- W1569531314 hasRelatedWork W1562447495 @default.
- W1569531314 hasRelatedWork W1612388676 @default.
- W1569531314 hasRelatedWork W2032285460 @default.
- W1569531314 hasRelatedWork W2761515192 @default.
- W1569531314 hasRelatedWork W2790384738 @default.
- W1569531314 hasRelatedWork W2790854384 @default.
- W1569531314 hasRelatedWork W2906621286 @default.
- W1569531314 hasRelatedWork W2980045067 @default.
- W1569531314 hasRelatedWork W3041351304 @default.
- W1569531314 hasRelatedWork W3045340765 @default.
- W1569531314 hasRelatedWork W3046282292 @default.
- W1569531314 hasRelatedWork W3189470976 @default.
- W1569531314 hasRelatedWork W88000967 @default.
- W1569531314 hasRelatedWork W2580598516 @default.
- W1569531314 hasRelatedWork W2817938295 @default.
- W1569531314 hasRelatedWork W2842484818 @default.
- W1569531314 isParatext "false" @default.
- W1569531314 isRetracted "false" @default.
- W1569531314 magId "1569531314" @default.
- W1569531314 workType "article" @default.