Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569585059> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1569585059 endingPage "759" @default.
- W1569585059 startingPage "759" @default.
- W1569585059 abstract "We consider a space-time fractional Fokker--Planck equation on a finite domain. The space-time fractional Fokker--Plank equation is obtained from the general Fokker--Planck equation by replacing the first order time derivative by the Caputo fractional derivative, the second order space derivative by the left and right Riemann--Liouville fractional derivatives. We propose a computationally effective implicit numerical method to solve this equation. Stability and convergence of the numerical method are discussed. We prove that the implicit numerical method is unconditionally stable, and convergent. The error estimate is also given. Numerical result is in good agreement with theoretical analysis. References D. A. Benson, S. W. Wheatcraft, M.M Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36(6) (2000) 1403--1412. doi:10.1029/2000WR900031 J. S. Ervin, J. P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in $R^d$, Numer. Meth. P. D. E., 23(2) (2007) 256--281. doi:10.1002/num.20169 F. Huang, F. Liu, The fundamental solution of the space-time fractional advection-dispersion equation, J. Appl. Math. Computing, 18 (2005) 233--245. http://jamc.net/contents/table_contents_view.php?idx=223 F. Liu, V. Anh, I. Turner and P. Zhuang, Time fractional advection dispersion equation, J. Appl. Math. Computing, 13 (2003) 233--245. http://jamc.net/contents/table_contents_view.php?idx=74 F. Liu, V.Anh, I. Turner, Numerical solution of space fractional Fokker--Planck equation, J. Comp. and Appl. Math., 166 (2004) 209--219. doi:10.1016/j.cam.2003.09.028 F. Liu, V. Anh, I. Turner and P. Zhuang, Numerical simulation for solute transport in fractal porous media, ANZIAM J., 45(E) (2004) 461--473. http://anziamj.austms.org.au/V45/CTAC2003/Liuf Q. Liu, F. Liu, I. Turner and V. Anh, Approximation of the Levy--Feller advection-dispersion process by random walk and finite difference method, J. Phys. Comp., 222 (2007) 57--70. doi:10.1016/j.jcp.2006.06.005 M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comp. and Appl. Math., 172 (2004) 65--77. doi:10.1016/j.cam.2004.01.033 R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000) 1--77. doi:10.1016/S0370-1573(00)00070-3 K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley, 1993. K. B. Oldham, J. Spanier, The fractional calculus, New York and London: Academic Press, 1974. I. Podlubny, Fractional Differential Equations, Academic, Press, New York, 1999. H. Risken, The Fokker--Planck Equations, Springer, Berlin, 1988. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: theory and applications, USA: Gordon and Breach Science Publishers, 1993. V. V. Yanovsky, A. V. Chechkin, D. Schertzer and A. V. Tur, Levy anomalous diffusion and fractional Fokker-Planck equation, Physica A, 282, (2000), 13--34. doi:10.1016/S0378-4371(99)00565-8 Q. Yu, F. Liu, V. Anh and I. Turner, Solving linear and nonlinear space-time fractional reaction-diffusion equations by a domian decomposition method, International J. for Numer. Meth. In Eng., (2007), in press." @default.
- W1569585059 created "2016-06-24" @default.
- W1569585059 creator A5007130769 @default.
- W1569585059 creator A5061268303 @default.
- W1569585059 creator A5073778062 @default.
- W1569585059 creator A5082780960 @default.
- W1569585059 date "2007-12-31" @default.
- W1569585059 modified "2023-09-24" @default.
- W1569585059 title "Numerical treatment for the fractional Fokker-Planck equation" @default.
- W1569585059 cites W1530054495 @default.
- W1569585059 cites W1539707276 @default.
- W1569585059 cites W1553338987 @default.
- W1569585059 cites W1997347739 @default.
- W1569585059 cites W2004467399 @default.
- W1569585059 cites W2008474712 @default.
- W1569585059 cites W2071945239 @default.
- W1569585059 cites W2099111135 @default.
- W1569585059 cites W2107162131 @default.
- W1569585059 cites W2111271983 @default.
- W1569585059 cites W2114849571 @default.
- W1569585059 cites W2123683503 @default.
- W1569585059 cites W2787959293 @default.
- W1569585059 doi "https://doi.org/10.21914/anziamj.v48i0.84" @default.
- W1569585059 hasPublicationYear "2007" @default.
- W1569585059 type Work @default.
- W1569585059 sameAs 1569585059 @default.
- W1569585059 citedByCount "16" @default.
- W1569585059 countsByYear W15695850592014 @default.
- W1569585059 countsByYear W15695850592015 @default.
- W1569585059 countsByYear W15695850592016 @default.
- W1569585059 countsByYear W15695850592017 @default.
- W1569585059 countsByYear W15695850592018 @default.
- W1569585059 countsByYear W15695850592019 @default.
- W1569585059 countsByYear W15695850592020 @default.
- W1569585059 crossrefType "journal-article" @default.
- W1569585059 hasAuthorship W1569585059A5007130769 @default.
- W1569585059 hasAuthorship W1569585059A5061268303 @default.
- W1569585059 hasAuthorship W1569585059A5073778062 @default.
- W1569585059 hasAuthorship W1569585059A5082780960 @default.
- W1569585059 hasBestOaLocation W15695850591 @default.
- W1569585059 hasConcept C121332964 @default.
- W1569585059 hasConcept C134306372 @default.
- W1569585059 hasConcept C138885662 @default.
- W1569585059 hasConcept C154249771 @default.
- W1569585059 hasConcept C162324750 @default.
- W1569585059 hasConcept C177562468 @default.
- W1569585059 hasConcept C2777303404 @default.
- W1569585059 hasConcept C2778572836 @default.
- W1569585059 hasConcept C33923547 @default.
- W1569585059 hasConcept C37914503 @default.
- W1569585059 hasConcept C41895202 @default.
- W1569585059 hasConcept C50522688 @default.
- W1569585059 hasConcept C62520636 @default.
- W1569585059 hasConcept C69123182 @default.
- W1569585059 hasConcept C78045399 @default.
- W1569585059 hasConceptScore W1569585059C121332964 @default.
- W1569585059 hasConceptScore W1569585059C134306372 @default.
- W1569585059 hasConceptScore W1569585059C138885662 @default.
- W1569585059 hasConceptScore W1569585059C154249771 @default.
- W1569585059 hasConceptScore W1569585059C162324750 @default.
- W1569585059 hasConceptScore W1569585059C177562468 @default.
- W1569585059 hasConceptScore W1569585059C2777303404 @default.
- W1569585059 hasConceptScore W1569585059C2778572836 @default.
- W1569585059 hasConceptScore W1569585059C33923547 @default.
- W1569585059 hasConceptScore W1569585059C37914503 @default.
- W1569585059 hasConceptScore W1569585059C41895202 @default.
- W1569585059 hasConceptScore W1569585059C50522688 @default.
- W1569585059 hasConceptScore W1569585059C62520636 @default.
- W1569585059 hasConceptScore W1569585059C69123182 @default.
- W1569585059 hasConceptScore W1569585059C78045399 @default.
- W1569585059 hasLocation W15695850591 @default.
- W1569585059 hasOpenAccess W1569585059 @default.
- W1569585059 hasPrimaryLocation W15695850591 @default.
- W1569585059 hasRelatedWork W1982560116 @default.
- W1569585059 hasRelatedWork W2141704600 @default.
- W1569585059 hasRelatedWork W2401850100 @default.
- W1569585059 hasRelatedWork W2612215933 @default.
- W1569585059 hasRelatedWork W2910133962 @default.
- W1569585059 hasRelatedWork W2921624037 @default.
- W1569585059 hasRelatedWork W2994214662 @default.
- W1569585059 hasRelatedWork W3117324600 @default.
- W1569585059 hasRelatedWork W3196870860 @default.
- W1569585059 hasRelatedWork W4230638242 @default.
- W1569585059 hasVolume "48" @default.
- W1569585059 isParatext "false" @default.
- W1569585059 isRetracted "false" @default.
- W1569585059 magId "1569585059" @default.
- W1569585059 workType "article" @default.