Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569603295> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1569603295 endingPage "1865" @default.
- W1569603295 startingPage "1863" @default.
- W1569603295 abstract "Cellular tissue factor (TF)–factor (F)VIIa proteolytic activity is influenced by thiol‐modifying reagents [1Le D.T. Rapaport S.I. Rao L.V. Studies of the mechanism for enhanced cell surface factor VIIatissue factor activation of factor X on fibroblast monolayers after their exposure to N‐ethylmaleimide.Thromb Haemost. 1994; 72: 848-55Crossref PubMed Scopus (0) Google Scholar, 2Ahamed J. Versteeg H.H. Kerver M. Chen V.M. Mueller B.M. Hogg P.J. Ruf W. Disulfide isomerization switches tissue factor from coagulation to cell signaling.Proc Natl Acad Sci USA. 2006; 103: 13932-7Crossref PubMed Scopus (290) Google Scholar, 3Chen V.M. Ahamed J. Versteeg H.H. Berndt M.C. Ruf W. Hogg P.J. Evidence for activation of tissue factor by an allosteric disulfide bond.Biochemistry. 2006; 45: 12020-8Crossref PubMed Scopus (165) Google Scholar]. TF with a broken allosteric Cys186–Cys209 disulfide bond [4Chen V.M. Hogg P.J. Allosteric disulfide bonds in thrombosis and thrombolysis.J Thromb Haemost. 2006; 4: 2533-41Crossref PubMed Scopus (79) Google Scholar] has a low affinity for FVIIa and reduced clotting activity [5Rehemtulla A. Ruf W. Edgington T.S. The integrity of the Cys186–Cys209 bond of the second disulfide loop of tissue factor is required for binding of factor VII.J Biol Chem. 1991; 266: 10294-9Abstract Full Text PDF PubMed Google Scholar], but retains normal activity in binary TF–FVIIa complex‐mediated protease‐activated receptor 2 signaling [2Ahamed J. Versteeg H.H. Kerver M. Chen V.M. Mueller B.M. Hogg P.J. Ruf W. Disulfide isomerization switches tissue factor from coagulation to cell signaling.Proc Natl Acad Sci USA. 2006; 103: 13932-7Crossref PubMed Scopus (290) Google Scholar]. Cell surface protein disulfide isomerase (PDI) is associated with TF in established cell models of TF‐FVIIa signaling, and modulation of PDI expression alters cell surface TF coagulant activity [2Ahamed J. Versteeg H.H. Kerver M. Chen V.M. Mueller B.M. Hogg P.J. Ruf W. Disulfide isomerization switches tissue factor from coagulation to cell signaling.Proc Natl Acad Sci USA. 2006; 103: 13932-7Crossref PubMed Scopus (290) Google Scholar]. Although the choice of cellular models influences the degree to which thiol pathways contribute to the regulation of TF cell surface procoagulant activity [6Liang H.P. Hogg P.J. Critical importance of the cell system when studying tissue factor de‐encryption.Blood. 2008; 112: 912-13Crossref PubMed Scopus (0) Google Scholar, 7Pendurthi U.R. Ghosh S. Mandal S.K. Rao L.V. Tissue factor activation: is disulfide bond switching a regulatory mechanism?.Blood. 2007; 110: 3900-8Crossref PubMed Scopus (0) Google Scholar], inhibition of PDI attenuates thrombus formation [8Reinhardt C. von Bruhl M.L. Manukyan D. Grahl L. Lorenz M. Altmann B. Dlugai S. Hess S. Konrad I. Orschiedt L. Mackman N. Ruddock L. Massberg S. Engelmann B. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation.J Clin Invest. 2008; 118: 1110-22PubMed Google Scholar, 9Cho J. Furie B.C. Coughlin S.R. Furie B. A critical role for extracellular protein disulfide isomerase during thrombus formation in mice.J Clin Invest. 2008; 118: 1123-31PubMed Google Scholar], possibly indicating that PDI acts as an important regulator of TF activities in vivo. We showed that procoagulant activity of soluble and microparticle‐associated TF is enhanced by bovine liver‐derived PDI (bPDI), independently of PDI’s reductase and isomerase function [10Versteeg H.H. Ruf W. Tissue factor coagulant function is enhanced by protein‐disulfide isomerase independent of oxidoreductase activity.J Biol Chem. 2007; 282: 25416-24Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar]. Recombinant PDI from bacterial expression has no TF‐enhancing activity comparable to that observed with PDI from natural sources [11Persson E. Protein disulfide isomerase has no stimulatory chaperone effect on factor X activation by factor VIIa‐soluble tissue factor.Thromb Res. 2008; 123: 171-6Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 12Kothari H. Sen P. Pendurthi U.R. Rao L.V. Bovine protein disulfide isomerase‐enhanced tissue factor coagulant function: is phospholipid contaminant in it the real culprit?.Blood. 2008; 111: 3295-6Crossref PubMed Scopus (0) Google Scholar] (confirmed by us). Kothari et al. [12Kothari H. Sen P. Pendurthi U.R. Rao L.V. Bovine protein disulfide isomerase‐enhanced tissue factor coagulant function: is phospholipid contaminant in it the real culprit?.Blood. 2008; 111: 3295-6Crossref PubMed Scopus (0) Google Scholar] showed that proteins known to interact with hydrophobic surfaces (phospholipase C and annexin V) abolished the rate‐enhancing effects of both bPDI and mixed phospholipid vesicles containing phosphatidylcholine (PC) and phosphatidylserine (PS). Although PS content was not quantified in this study, the authors concluded that contaminating procoagulant phospholipids are the relevant activators of TF activity in bPDI. The experiments presented here document distinct differences between bPDI and PC/PS that are inconsistent with this conclusion. The rate‐enhancing effect of bPDI obtained from commercial sources (Sigma, St. Louis, MO, USA) [10Versteeg H.H. Ruf W. Tissue factor coagulant function is enhanced by protein‐disulfide isomerase independent of oxidoreductase activity.J Biol Chem. 2007; 282: 25416-24Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar] was reproducibly observed in subsequently purchased batches and confirmed in independent studies [11Persson E. Protein disulfide isomerase has no stimulatory chaperone effect on factor X activation by factor VIIa‐soluble tissue factor.Thromb Res. 2008; 123: 171-6Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 12Kothari H. Sen P. Pendurthi U.R. Rao L.V. Bovine protein disulfide isomerase‐enhanced tissue factor coagulant function: is phospholipid contaminant in it the real culprit?.Blood. 2008; 111: 3295-6Crossref PubMed Scopus (0) Google Scholar]. In order to investigate the presence of potential contaminants in bPDI, we first used the insolubility of proteins in 80%− 20 °C acetone to recover bPDI in a centrifugation step. Comparison of the starting material with the protein redissolved after precipitation showed no loss of potency of the rate‐enhancing effect in the soluble TF system. In contrast, no activity was recovered when 10 μm PC/PS vesicles with similar rate‐enhancing activity to that of bPDI were subjected to the same acetone precipitation procedure (Fig. 1A). To distinguish between PDI and other potential protein contaminants, two distinct monoclonal antibodies were employed to deplete the bPDI preparation of bPDI, and this was followed by evaluation of the supernatant in the soluble TF–FVIIa‐mediated FXa generation assay. Both specific antibodies completely abolished the rate‐enhancing effect of the bPDI preparation, but had no effect on the activity of PC/PS vesicles that were treated similarly (Fig. 1B). Similar to the soluble TF system, 100 nm bPDI or 10 μm PC/PS enhanced by two‐fold to three‐fold the activity of TF+ microparticles obtained from HaCaT keratinocytes. The wasp venom‐derived peptide mastoparan is a well‐characterized inhibitor of PDI’s hydrophobic pocket, which is required for chaperone activity [13Klappa P. Ruddock L.W. Darby N.J. Freedman R.B. The b′ domain provides the principal peptide‐binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins.EMBO J. 1998; 17: 927-35Crossref PubMed Scopus (0) Google Scholar]. Mastoparan, but not the inactive control peptide mastoparan 17, dose‐dependently inhibited the rate‐enhancing effect of bPDI, but not of PC/PS vesicles (Fig. 1C). These data provide an independent line of evidence for our previous conclusion that bPDI specifically modulates TF’s procoagulant activity through chaperone activity. The HaCaT keratinocyte is a cell model in which TF activity is regulated by PDI [2Ahamed J. Versteeg H.H. Kerver M. Chen V.M. Mueller B.M. Hogg P.J. Ruf W. Disulfide isomerization switches tissue factor from coagulation to cell signaling.Proc Natl Acad Sci USA. 2006; 103: 13932-7Crossref PubMed Scopus (290) Google Scholar]. There was no change in cell surface TF procoagulant activity upon addition of 10 μm PC/PS, but addition of 100 nm bPDI or N‐ethylmaleimide‐blocked bPDI enhanced FXa generation by more than two‐fold (Fig. 1D). Depletion of the bPDI preparation with anti‐PDI antibody completely abolished the rate‐enhancing effect of bPDI. These data demonstrate that bPDI has specific effects on TF cellular activity that are not reproduced by the addition of procoagulant phospholipid. These experiments in purified and cellular systems suggest that bPDI’s effects on TF procoagulant activity are distinct from the rate‐enhancing effects of phospholipid. Although we could not detect PS in organic extracts of the commercial bPDI preparation by mass spectrometry, we cannot exclude the possibility that bPDI has other structurally bound ligands that are required for its chaperone activity towards the TF initiation complex. Persson [11Persson E. Protein disulfide isomerase has no stimulatory chaperone effect on factor X activation by factor VIIa‐soluble tissue factor.Thromb Res. 2008; 123: 171-6Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar] further showed that bPDI’s effect on TF procoagulant function is modulated by either mutations in the FVIIa Gla‐domain or changes in divalent metal ions that alter the interaction of the FVIIa Gla domain with TF [14Bajaj S.P. Schmidt A.E. Agah S. Bajaj M.S. Padmanabhan K. High resolution structures of p‐aminobenzamidine‐ and benzamidine–VIIa/soluble tissue factor: unpredicted conformation of the 192–193 peptide bond and mapping of Ca2+, Mg2+, Na+, and Zn2+ sites in factor VIIa.J Biol Chem. 2006; 281: 24873-88Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar]. These data may indicate that PDI interacts not only with TF, as suggested from mutagenesis [10Versteeg H.H. Ruf W. Tissue factor coagulant function is enhanced by protein‐disulfide isomerase independent of oxidoreductase activity.J Biol Chem. 2007; 282: 25416-24Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar], but also with the FVIIa Gla‐domain through potential contacts with PDI’s hydrophobic pocket. The chaperone activity of PDI should be further considered as a possible mechanism that contributes to the regulation of TF thrombogenic pathways in vivo [8Reinhardt C. von Bruhl M.L. Manukyan D. Grahl L. Lorenz M. Altmann B. Dlugai S. Hess S. Konrad I. Orschiedt L. Mackman N. Ruddock L. Massberg S. Engelmann B. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation.J Clin Invest. 2008; 118: 1110-22PubMed Google Scholar, 9Cho J. Furie B.C. Coughlin S.R. Furie B. A critical role for extracellular protein disulfide isomerase during thrombus formation in mice.J Clin Invest. 2008; 118: 1123-31PubMed Google Scholar]. In future studies, it will be imperative to investigate the functional properties and post‐translational modifications of cell surface human PDI from natural and cellular sources. We thank P. Tejada for technical assistance and C. Johnson for manuscript preparation. This work was supported by NIH grant HL31950. The authors state that they have no conflict of interest." @default.
- W1569603295 created "2016-06-24" @default.
- W1569603295 creator A5004216951 @default.
- W1569603295 creator A5005286957 @default.
- W1569603295 date "2010-08-01" @default.
- W1569603295 modified "2023-09-30" @default.
- W1569603295 title "Effect of protein disulfide isomerase chaperone activity inhibition on tissue factor activity" @default.
- W1569603295 cites W1524548385 @default.
- W1569603295 cites W1965285287 @default.
- W1569603295 cites W1971697017 @default.
- W1569603295 cites W1991794293 @default.
- W1569603295 cites W1997640602 @default.
- W1569603295 cites W2014164476 @default.
- W1569603295 cites W2034285900 @default.
- W1569603295 cites W2038670247 @default.
- W1569603295 cites W2094967295 @default.
- W1569603295 cites W2101356043 @default.
- W1569603295 cites W2113101438 @default.
- W1569603295 cites W2128054798 @default.
- W1569603295 cites W2145028149 @default.
- W1569603295 cites W2416966977 @default.
- W1569603295 doi "https://doi.org/10.1111/j.1538-7836.2010.03918.x" @default.
- W1569603295 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2937088" @default.
- W1569603295 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20492472" @default.
- W1569603295 hasPublicationYear "2010" @default.
- W1569603295 type Work @default.
- W1569603295 sameAs 1569603295 @default.
- W1569603295 citedByCount "15" @default.
- W1569603295 countsByYear W15696032952012 @default.
- W1569603295 countsByYear W15696032952013 @default.
- W1569603295 countsByYear W15696032952014 @default.
- W1569603295 countsByYear W15696032952015 @default.
- W1569603295 countsByYear W15696032952016 @default.
- W1569603295 countsByYear W15696032952018 @default.
- W1569603295 countsByYear W15696032952022 @default.
- W1569603295 crossrefType "journal-article" @default.
- W1569603295 hasAuthorship W1569603295A5004216951 @default.
- W1569603295 hasAuthorship W1569603295A5005286957 @default.
- W1569603295 hasBestOaLocation W15696032951 @default.
- W1569603295 hasConcept C142724271 @default.
- W1569603295 hasConcept C185592680 @default.
- W1569603295 hasConcept C27256138 @default.
- W1569603295 hasConcept C2775962898 @default.
- W1569603295 hasConcept C5098756 @default.
- W1569603295 hasConcept C55493867 @default.
- W1569603295 hasConcept C71924100 @default.
- W1569603295 hasConcept C86803240 @default.
- W1569603295 hasConcept C95444343 @default.
- W1569603295 hasConceptScore W1569603295C142724271 @default.
- W1569603295 hasConceptScore W1569603295C185592680 @default.
- W1569603295 hasConceptScore W1569603295C27256138 @default.
- W1569603295 hasConceptScore W1569603295C2775962898 @default.
- W1569603295 hasConceptScore W1569603295C5098756 @default.
- W1569603295 hasConceptScore W1569603295C55493867 @default.
- W1569603295 hasConceptScore W1569603295C71924100 @default.
- W1569603295 hasConceptScore W1569603295C86803240 @default.
- W1569603295 hasConceptScore W1569603295C95444343 @default.
- W1569603295 hasFunder F4320332161 @default.
- W1569603295 hasIssue "8" @default.
- W1569603295 hasLocation W15696032951 @default.
- W1569603295 hasLocation W15696032952 @default.
- W1569603295 hasLocation W15696032953 @default.
- W1569603295 hasLocation W15696032954 @default.
- W1569603295 hasOpenAccess W1569603295 @default.
- W1569603295 hasPrimaryLocation W15696032951 @default.
- W1569603295 hasRelatedWork W1551340508 @default.
- W1569603295 hasRelatedWork W1559988816 @default.
- W1569603295 hasRelatedWork W1584511565 @default.
- W1569603295 hasRelatedWork W2041250116 @default.
- W1569603295 hasRelatedWork W2056290410 @default.
- W1569603295 hasRelatedWork W2087593066 @default.
- W1569603295 hasRelatedWork W2093100151 @default.
- W1569603295 hasRelatedWork W2111632160 @default.
- W1569603295 hasRelatedWork W2381745644 @default.
- W1569603295 hasRelatedWork W4244425588 @default.
- W1569603295 hasVolume "8" @default.
- W1569603295 isParatext "false" @default.
- W1569603295 isRetracted "false" @default.
- W1569603295 magId "1569603295" @default.
- W1569603295 workType "article" @default.