Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569761842> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1569761842 abstract "We consider the analysis operator and synthesis dictionary learning problems based on the the $ell_1$ regularized sparse representation model. We reveal the internal relations between the $ell_1$-based analysis model and synthesis model. We then introduce an approach to learn both analysis operator and synthesis dictionary simultaneously by using a unified framework of bi-level optimization. Our aim is to learn a meaningful operator (dictionary) such that the minimum energy solution of the analysis (synthesis)-prior based model is as close as possible to the ground-truth. We solve the bi-level optimization problem using the implicit differentiation technique. Moreover, we demonstrate the effectiveness of our leaning approach by applying the learned analysis operator (dictionary) to the image denoising task and comparing its performance with state-of-the-art methods. Under this unified framework, we can compare the performance of the two types of priors." @default.
- W1569761842 created "2016-06-24" @default.
- W1569761842 creator A5011359067 @default.
- W1569761842 creator A5032205387 @default.
- W1569761842 creator A5077938164 @default.
- W1569761842 date "2014-01-16" @default.
- W1569761842 modified "2023-09-26" @default.
- W1569761842 title "Learning $ell_1$-based analysis and synthesis sparsity priors using bi-level optimization" @default.
- W1569761842 cites W2005876975 @default.
- W1569761842 cites W2051434435 @default.
- W1569761842 cites W2056370875 @default.
- W1569761842 cites W2092663520 @default.
- W1569761842 cites W2107844156 @default.
- W1569761842 cites W2110158442 @default.
- W1569761842 cites W2120047933 @default.
- W1569761842 cites W2124659975 @default.
- W1569761842 cites W2130184048 @default.
- W1569761842 cites W2130248603 @default.
- W1569761842 cites W2139643804 @default.
- W1569761842 cites W2146738562 @default.
- W1569761842 cites W2148056225 @default.
- W1569761842 cites W2153663612 @default.
- W1569761842 cites W2158874661 @default.
- W1569761842 cites W2160547390 @default.
- W1569761842 cites W2257784670 @default.
- W1569761842 cites W2296319761 @default.
- W1569761842 cites W3100455090 @default.
- W1569761842 doi "https://doi.org/10.48550/arxiv.1401.4105" @default.
- W1569761842 hasPublicationYear "2014" @default.
- W1569761842 type Work @default.
- W1569761842 sameAs 1569761842 @default.
- W1569761842 citedByCount "2" @default.
- W1569761842 countsByYear W15697618422016 @default.
- W1569761842 countsByYear W15697618422018 @default.
- W1569761842 crossrefType "posted-content" @default.
- W1569761842 hasAuthorship W1569761842A5011359067 @default.
- W1569761842 hasAuthorship W1569761842A5032205387 @default.
- W1569761842 hasAuthorship W1569761842A5077938164 @default.
- W1569761842 hasBestOaLocation W15697618421 @default.
- W1569761842 hasConcept C104317684 @default.
- W1569761842 hasConcept C107673813 @default.
- W1569761842 hasConcept C11413529 @default.
- W1569761842 hasConcept C115961682 @default.
- W1569761842 hasConcept C124066611 @default.
- W1569761842 hasConcept C126255220 @default.
- W1569761842 hasConcept C153180895 @default.
- W1569761842 hasConcept C154945302 @default.
- W1569761842 hasConcept C158448853 @default.
- W1569761842 hasConcept C17020691 @default.
- W1569761842 hasConcept C17744445 @default.
- W1569761842 hasConcept C177769412 @default.
- W1569761842 hasConcept C185592680 @default.
- W1569761842 hasConcept C199539241 @default.
- W1569761842 hasConcept C2776359362 @default.
- W1569761842 hasConcept C33923547 @default.
- W1569761842 hasConcept C41008148 @default.
- W1569761842 hasConcept C55493867 @default.
- W1569761842 hasConcept C86339819 @default.
- W1569761842 hasConcept C94625758 @default.
- W1569761842 hasConceptScore W1569761842C104317684 @default.
- W1569761842 hasConceptScore W1569761842C107673813 @default.
- W1569761842 hasConceptScore W1569761842C11413529 @default.
- W1569761842 hasConceptScore W1569761842C115961682 @default.
- W1569761842 hasConceptScore W1569761842C124066611 @default.
- W1569761842 hasConceptScore W1569761842C126255220 @default.
- W1569761842 hasConceptScore W1569761842C153180895 @default.
- W1569761842 hasConceptScore W1569761842C154945302 @default.
- W1569761842 hasConceptScore W1569761842C158448853 @default.
- W1569761842 hasConceptScore W1569761842C17020691 @default.
- W1569761842 hasConceptScore W1569761842C17744445 @default.
- W1569761842 hasConceptScore W1569761842C177769412 @default.
- W1569761842 hasConceptScore W1569761842C185592680 @default.
- W1569761842 hasConceptScore W1569761842C199539241 @default.
- W1569761842 hasConceptScore W1569761842C2776359362 @default.
- W1569761842 hasConceptScore W1569761842C33923547 @default.
- W1569761842 hasConceptScore W1569761842C41008148 @default.
- W1569761842 hasConceptScore W1569761842C55493867 @default.
- W1569761842 hasConceptScore W1569761842C86339819 @default.
- W1569761842 hasConceptScore W1569761842C94625758 @default.
- W1569761842 hasLocation W15697618421 @default.
- W1569761842 hasOpenAccess W1569761842 @default.
- W1569761842 hasPrimaryLocation W15697618421 @default.
- W1569761842 hasRelatedWork W1558171043 @default.
- W1569761842 hasRelatedWork W1972656095 @default.
- W1569761842 hasRelatedWork W1983610137 @default.
- W1569761842 hasRelatedWork W2004814108 @default.
- W1569761842 hasRelatedWork W2011887066 @default.
- W1569761842 hasRelatedWork W2044495222 @default.
- W1569761842 hasRelatedWork W2070053517 @default.
- W1569761842 hasRelatedWork W2113983429 @default.
- W1569761842 hasRelatedWork W2990531703 @default.
- W1569761842 hasRelatedWork W4206613431 @default.
- W1569761842 isParatext "false" @default.
- W1569761842 isRetracted "false" @default.
- W1569761842 magId "1569761842" @default.
- W1569761842 workType "article" @default.