Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569773309> ?p ?o ?g. }
- W1569773309 endingPage "1759" @default.
- W1569773309 startingPage "1747" @default.
- W1569773309 abstract "Spine-related disorders are amongst the most frequently encountered problems in clinical medicine. For several applications such as 1) to improve the assessment of the strength of the spine, as well as 2) to optimize the personalization of spinal interventions, image-based biomechanical modeling of the vertebrae is expected to play an important predictive role. However, this requires the construction of computational models that are subject-specific and comprehensive. In particular, they need to incorporate information about the vertebral anisotropic micro-architecture, which plays a central role in the biomechanical function of the vertebrae. In practice, however, accurate personalization of the vertebral trabeculae has proven to be difficult as its imaging in vivo is currently infeasible. Consequently, this paper presents a statistical approach for accurate prediction of the vertebral fabric tensors based on a training sample of ex vivo micro-CT images. To the best of our knowledge, this is the first predictive model proposed and validated for vertebral datasets. The method combines features selection and partial least squares regression in order to derive optimal latent variables for the prediction of the fabric tensors based on the more easily extracted shape and density information. Detailed validation with 20 ex vivo T12 vertebrae demonstrates the accuracy and consistency of the approach for the personalization of trabecular anisotropy." @default.
- W1569773309 created "2016-06-24" @default.
- W1569773309 creator A5025157241 @default.
- W1569773309 creator A5044072525 @default.
- W1569773309 creator A5044566450 @default.
- W1569773309 creator A5049192404 @default.
- W1569773309 creator A5055587668 @default.
- W1569773309 creator A5078391768 @default.
- W1569773309 creator A5080509783 @default.
- W1569773309 date "2015-08-01" @default.
- W1569773309 modified "2023-10-16" @default.
- W1569773309 title "A Predictive Model of Vertebral Trabecular Anisotropy From Ex Vivo Micro-CT" @default.
- W1569773309 cites W118948194 @default.
- W1569773309 cites W158542629 @default.
- W1569773309 cites W176782626 @default.
- W1569773309 cites W1964345647 @default.
- W1569773309 cites W1964361784 @default.
- W1569773309 cites W1974259943 @default.
- W1569773309 cites W1979292780 @default.
- W1569773309 cites W1983496390 @default.
- W1569773309 cites W1985353525 @default.
- W1569773309 cites W1985779647 @default.
- W1569773309 cites W1986131567 @default.
- W1569773309 cites W1987765806 @default.
- W1569773309 cites W1997144039 @default.
- W1569773309 cites W1998653799 @default.
- W1569773309 cites W2000175914 @default.
- W1569773309 cites W2008718896 @default.
- W1569773309 cites W2012527614 @default.
- W1569773309 cites W2013601434 @default.
- W1569773309 cites W2015503348 @default.
- W1569773309 cites W2018919032 @default.
- W1569773309 cites W2023251715 @default.
- W1569773309 cites W2024440055 @default.
- W1569773309 cites W2035485049 @default.
- W1569773309 cites W2040129532 @default.
- W1569773309 cites W2047287132 @default.
- W1569773309 cites W2048192550 @default.
- W1569773309 cites W2048594385 @default.
- W1569773309 cites W2053591982 @default.
- W1569773309 cites W2055703272 @default.
- W1569773309 cites W2062124925 @default.
- W1569773309 cites W2062562487 @default.
- W1569773309 cites W2066172379 @default.
- W1569773309 cites W2067399451 @default.
- W1569773309 cites W2067484188 @default.
- W1569773309 cites W2067748909 @default.
- W1569773309 cites W2068038765 @default.
- W1569773309 cites W2068167547 @default.
- W1569773309 cites W2068930363 @default.
- W1569773309 cites W2076743593 @default.
- W1569773309 cites W2084806705 @default.
- W1569773309 cites W2087733742 @default.
- W1569773309 cites W2088223019 @default.
- W1569773309 cites W2091449246 @default.
- W1569773309 cites W2096965528 @default.
- W1569773309 cites W2103186475 @default.
- W1569773309 cites W2118129956 @default.
- W1569773309 cites W2118237321 @default.
- W1569773309 cites W2123414669 @default.
- W1569773309 cites W2128409098 @default.
- W1569773309 cites W2128569032 @default.
- W1569773309 cites W2128907102 @default.
- W1569773309 cites W2142424661 @default.
- W1569773309 cites W2147145057 @default.
- W1569773309 cites W2149402078 @default.
- W1569773309 cites W2149582553 @default.
- W1569773309 cites W2159144057 @default.
- W1569773309 cites W2162805098 @default.
- W1569773309 cites W2163694914 @default.
- W1569773309 cites W2164086786 @default.
- W1569773309 cites W2171735626 @default.
- W1569773309 cites W2322588766 @default.
- W1569773309 cites W2493863443 @default.
- W1569773309 doi "https://doi.org/10.1109/tmi.2014.2387114" @default.
- W1569773309 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25561590" @default.
- W1569773309 hasPublicationYear "2015" @default.
- W1569773309 type Work @default.
- W1569773309 sameAs 1569773309 @default.
- W1569773309 citedByCount "4" @default.
- W1569773309 countsByYear W15697733092015 @default.
- W1569773309 countsByYear W15697733092016 @default.
- W1569773309 countsByYear W15697733092017 @default.
- W1569773309 countsByYear W15697733092022 @default.
- W1569773309 crossrefType "journal-article" @default.
- W1569773309 hasAuthorship W1569773309A5025157241 @default.
- W1569773309 hasAuthorship W1569773309A5044072525 @default.
- W1569773309 hasAuthorship W1569773309A5044566450 @default.
- W1569773309 hasAuthorship W1569773309A5049192404 @default.
- W1569773309 hasAuthorship W1569773309A5055587668 @default.
- W1569773309 hasAuthorship W1569773309A5078391768 @default.
- W1569773309 hasAuthorship W1569773309A5080509783 @default.
- W1569773309 hasConcept C119857082 @default.
- W1569773309 hasConcept C121332964 @default.
- W1569773309 hasConcept C126838900 @default.
- W1569773309 hasConcept C136764020 @default.
- W1569773309 hasConcept C153180895 @default.
- W1569773309 hasConcept C154945302 @default.