Matches in SemOpenAlex for { <https://semopenalex.org/work/W1569892065> ?p ?o ?g. }
- W1569892065 abstract "Recent advances in semantic image segmentation have mostly been achieved by training deep convolutional neural networks (CNNs). We show how to improve semantic segmentation through the use of contextual information; specifically, we explore `patch-patch' context between image regions, and `patch-background' context. For learning from the patch-patch context, we formulate Conditional Random Fields (CRFs) with CNN-based pairwise potential functions to capture semantic correlations between neighboring patches. Efficient piecewise training of the proposed deep structured model is then applied to avoid repeated expensive CRF inference for back propagation. For capturing the patch-background context, we show that a network design with traditional multi-scale image input and sliding pyramid pooling is effective for improving performance. Our experimental results set new state-of-the-art performance on a number of popular semantic segmentation datasets, including NYUDv2, PASCAL VOC 2012, PASCAL-Context, and SIFT-flow. In particular, we achieve an intersection-over-union score of 78.0 on the challenging PASCAL VOC 2012 dataset." @default.
- W1569892065 created "2016-06-24" @default.
- W1569892065 creator A5006294869 @default.
- W1569892065 creator A5029912845 @default.
- W1569892065 creator A5066326593 @default.
- W1569892065 creator A5089444805 @default.
- W1569892065 date "2015-04-04" @default.
- W1569892065 modified "2023-09-23" @default.
- W1569892065 title "Efficient piecewise training of deep structured models for semantic segmentation" @default.
- W1569892065 cites W1032684693 @default.
- W1569892065 cites W125693051 @default.
- W1569892065 cites W1511986666 @default.
- W1569892065 cites W1565402342 @default.
- W1569892065 cites W1585910451 @default.
- W1569892065 cites W1653341947 @default.
- W1569892065 cites W1857926807 @default.
- W1569892065 cites W1861492603 @default.
- W1569892065 cites W1903029394 @default.
- W1569892065 cites W1905829557 @default.
- W1569892065 cites W1923115158 @default.
- W1569892065 cites W1938976761 @default.
- W1569892065 cites W1948751323 @default.
- W1569892065 cites W2006431677 @default.
- W1569892065 cites W2022508996 @default.
- W1569892065 cites W2031489346 @default.
- W1569892065 cites W2067912884 @default.
- W1569892065 cites W2081293863 @default.
- W1569892065 cites W2102492119 @default.
- W1569892065 cites W2102605133 @default.
- W1569892065 cites W2108598243 @default.
- W1569892065 cites W2111077768 @default.
- W1569892065 cites W2125215748 @default.
- W1569892065 cites W2136064009 @default.
- W1569892065 cites W2141364309 @default.
- W1569892065 cites W2144794286 @default.
- W1569892065 cites W2154644822 @default.
- W1569892065 cites W2154815154 @default.
- W1569892065 cites W2161236525 @default.
- W1569892065 cites W2162915993 @default.
- W1569892065 cites W2928160594 @default.
- W1569892065 cites W2949086864 @default.
- W1569892065 cites W2950612966 @default.
- W1569892065 cites W2951234442 @default.
- W1569892065 cites W2951277909 @default.
- W1569892065 cites W2952422028 @default.
- W1569892065 cites W2952637581 @default.
- W1569892065 cites W2953066166 @default.
- W1569892065 cites W2962835968 @default.
- W1569892065 cites W2964288706 @default.
- W1569892065 cites W54257720 @default.
- W1569892065 cites W78159342 @default.
- W1569892065 doi "https://doi.org/10.48550/arxiv.1504.01013" @default.
- W1569892065 hasPublicationYear "2015" @default.
- W1569892065 type Work @default.
- W1569892065 sameAs 1569892065 @default.
- W1569892065 citedByCount "16" @default.
- W1569892065 countsByYear W15698920652015 @default.
- W1569892065 countsByYear W15698920652016 @default.
- W1569892065 countsByYear W15698920652018 @default.
- W1569892065 countsByYear W15698920652019 @default.
- W1569892065 countsByYear W15698920652020 @default.
- W1569892065 crossrefType "posted-content" @default.
- W1569892065 hasAuthorship W1569892065A5006294869 @default.
- W1569892065 hasAuthorship W1569892065A5029912845 @default.
- W1569892065 hasAuthorship W1569892065A5066326593 @default.
- W1569892065 hasAuthorship W1569892065A5089444805 @default.
- W1569892065 hasBestOaLocation W15698920651 @default.
- W1569892065 hasConcept C108583219 @default.
- W1569892065 hasConcept C119857082 @default.
- W1569892065 hasConcept C124504099 @default.
- W1569892065 hasConcept C134306372 @default.
- W1569892065 hasConcept C152565575 @default.
- W1569892065 hasConcept C153180895 @default.
- W1569892065 hasConcept C154945302 @default.
- W1569892065 hasConcept C164660894 @default.
- W1569892065 hasConcept C199360897 @default.
- W1569892065 hasConcept C2775953691 @default.
- W1569892065 hasConcept C2776214188 @default.
- W1569892065 hasConcept C33923547 @default.
- W1569892065 hasConcept C41008148 @default.
- W1569892065 hasConcept C75608658 @default.
- W1569892065 hasConcept C81363708 @default.
- W1569892065 hasConcept C89600930 @default.
- W1569892065 hasConceptScore W1569892065C108583219 @default.
- W1569892065 hasConceptScore W1569892065C119857082 @default.
- W1569892065 hasConceptScore W1569892065C124504099 @default.
- W1569892065 hasConceptScore W1569892065C134306372 @default.
- W1569892065 hasConceptScore W1569892065C152565575 @default.
- W1569892065 hasConceptScore W1569892065C153180895 @default.
- W1569892065 hasConceptScore W1569892065C154945302 @default.
- W1569892065 hasConceptScore W1569892065C164660894 @default.
- W1569892065 hasConceptScore W1569892065C199360897 @default.
- W1569892065 hasConceptScore W1569892065C2775953691 @default.
- W1569892065 hasConceptScore W1569892065C2776214188 @default.
- W1569892065 hasConceptScore W1569892065C33923547 @default.
- W1569892065 hasConceptScore W1569892065C41008148 @default.
- W1569892065 hasConceptScore W1569892065C75608658 @default.
- W1569892065 hasConceptScore W1569892065C81363708 @default.
- W1569892065 hasConceptScore W1569892065C89600930 @default.
- W1569892065 hasLocation W15698920651 @default.