Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570243798> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W1570243798 endingPage "1960" @default.
- W1570243798 startingPage "1955" @default.
- W1570243798 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f left-parenthesis x right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>f(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a monic polynomial in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper Z left-bracket x right-bracket> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Z</mml:mi> </mml:mrow> <mml:mo stretchy=false>[</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=false>]</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {Z}[x]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with no rational roots but with roots in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper Q Subscript p> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Q</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>mathbb {Q}_{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, or equivalently, with roots mod <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is known that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f left-parenthesis x right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>f(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> cannot be irreducible but can be a product of two or more irreducible polynomials, and that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f left-parenthesis x right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>f(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a product of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m greater-than 1> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>m>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> irreducible polynomials, then its Galois group must be a union of conjugates of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=application/x-tex>m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> proper subgroups. We prove that for any <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m greater-than 1> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>m>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, every finite solvable group that is a union of conjugates of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=application/x-tex>m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> proper subgroups (where all these conjugates have trivial intersection) occurs as the Galois group of such a polynomial, and that the same result (with <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m equals 2> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>m=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) holds for all Frobenius groups. It is also observed that every nonsolvable Frobenius group is realizable as the Galois group of a geometric, i.e. regular, extension of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper Q left-parenthesis t right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>Q</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathbb {Q}(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W1570243798 created "2016-06-24" @default.
- W1570243798 creator A5010496827 @default.
- W1570243798 date "2008-02-12" @default.
- W1570243798 modified "2023-09-23" @default.
- W1570243798 title "Polynomials with roots in ℚ_{𝕡} for all 𝕡" @default.
- W1570243798 cites W1976282120 @default.
- W1570243798 cites W1977069680 @default.
- W1570243798 cites W2004636337 @default.
- W1570243798 cites W2007704176 @default.
- W1570243798 cites W2132287244 @default.
- W1570243798 cites W2318964080 @default.
- W1570243798 cites W2490728539 @default.
- W1570243798 cites W4236770967 @default.
- W1570243798 doi "https://doi.org/10.1090/s0002-9939-08-09155-7" @default.
- W1570243798 hasPublicationYear "2008" @default.
- W1570243798 type Work @default.
- W1570243798 sameAs 1570243798 @default.
- W1570243798 citedByCount "12" @default.
- W1570243798 countsByYear W15702437982013 @default.
- W1570243798 countsByYear W15702437982014 @default.
- W1570243798 countsByYear W15702437982015 @default.
- W1570243798 countsByYear W15702437982016 @default.
- W1570243798 countsByYear W15702437982017 @default.
- W1570243798 countsByYear W15702437982018 @default.
- W1570243798 countsByYear W15702437982020 @default.
- W1570243798 countsByYear W15702437982021 @default.
- W1570243798 countsByYear W15702437982022 @default.
- W1570243798 crossrefType "journal-article" @default.
- W1570243798 hasAuthorship W1570243798A5010496827 @default.
- W1570243798 hasBestOaLocation W15702437981 @default.
- W1570243798 hasConcept C11413529 @default.
- W1570243798 hasConcept C154945302 @default.
- W1570243798 hasConcept C2776321320 @default.
- W1570243798 hasConcept C41008148 @default.
- W1570243798 hasConceptScore W1570243798C11413529 @default.
- W1570243798 hasConceptScore W1570243798C154945302 @default.
- W1570243798 hasConceptScore W1570243798C2776321320 @default.
- W1570243798 hasConceptScore W1570243798C41008148 @default.
- W1570243798 hasIssue "6" @default.
- W1570243798 hasLocation W15702437981 @default.
- W1570243798 hasOpenAccess W1570243798 @default.
- W1570243798 hasPrimaryLocation W15702437981 @default.
- W1570243798 hasRelatedWork W1490908374 @default.
- W1570243798 hasRelatedWork W151193258 @default.
- W1570243798 hasRelatedWork W1529400504 @default.
- W1570243798 hasRelatedWork W1607472309 @default.
- W1570243798 hasRelatedWork W1871911958 @default.
- W1570243798 hasRelatedWork W1892467659 @default.
- W1570243798 hasRelatedWork W2808586768 @default.
- W1570243798 hasRelatedWork W2998403542 @default.
- W1570243798 hasRelatedWork W3107474891 @default.
- W1570243798 hasRelatedWork W38394648 @default.
- W1570243798 hasVolume "136" @default.
- W1570243798 isParatext "false" @default.
- W1570243798 isRetracted "false" @default.
- W1570243798 magId "1570243798" @default.
- W1570243798 workType "article" @default.