Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570342265> ?p ?o ?g. }
Showing items 1 to 44 of
44
with 100 items per page.
- W1570342265 abstract "In this chapter we give further means to extend the domain of definition of an analytic function. We shall apply Theorem 1.2 of Chapter III in the following context. Suppose we are given an analytic function f of an open connected set U. Let V be open and connected, and suppose that U ∩ V is not empty, so is open. We ask whether there exists an analytic function g on V such that f = g on U ∩ V, or only such that f(z) = g(z) for all z in some set of points of U ∩ V which is not discrete. The above-mentioned Theorem 1.2 shows that such a function g if it exists is uniquely determined. One calls such a function g a direct analytic continuation of f, and we also say that (g, V) is a direct analytic continuation of (f, U). We use the word “direct” because later we shall deal with analytic continuation along a curve and it is useful to have an adjective to distinguish the two notions. For simplicity, however, one usually omits the word “direct” if no confusion can result from this omission. If a direct analytic continuation exists as above, then there is is unique analytic function h on U ∪ V such that h = f on U and h = g on V." @default.
- W1570342265 created "2016-06-24" @default.
- W1570342265 creator A5070348661 @default.
- W1570342265 date "1993-01-01" @default.
- W1570342265 modified "2023-10-05" @default.
- W1570342265 title "Analytic Continuation Along Curves" @default.
- W1570342265 cites W2003161828 @default.
- W1570342265 cites W2966983346 @default.
- W1570342265 doi "https://doi.org/10.1007/978-3-642-59273-7_11" @default.
- W1570342265 hasPublicationYear "1993" @default.
- W1570342265 type Work @default.
- W1570342265 sameAs 1570342265 @default.
- W1570342265 citedByCount "0" @default.
- W1570342265 crossrefType "book-chapter" @default.
- W1570342265 hasAuthorship W1570342265A5070348661 @default.
- W1570342265 hasConcept C134306372 @default.
- W1570342265 hasConcept C151602998 @default.
- W1570342265 hasConcept C199360897 @default.
- W1570342265 hasConcept C33923547 @default.
- W1570342265 hasConcept C41008148 @default.
- W1570342265 hasConcept C88626702 @default.
- W1570342265 hasConceptScore W1570342265C134306372 @default.
- W1570342265 hasConceptScore W1570342265C151602998 @default.
- W1570342265 hasConceptScore W1570342265C199360897 @default.
- W1570342265 hasConceptScore W1570342265C33923547 @default.
- W1570342265 hasConceptScore W1570342265C41008148 @default.
- W1570342265 hasConceptScore W1570342265C88626702 @default.
- W1570342265 hasLocation W15703422651 @default.
- W1570342265 hasOpenAccess W1570342265 @default.
- W1570342265 hasPrimaryLocation W15703422651 @default.
- W1570342265 hasRelatedWork W1009503514 @default.
- W1570342265 hasRelatedWork W1969138383 @default.
- W1570342265 hasRelatedWork W1995956019 @default.
- W1570342265 hasRelatedWork W2025238519 @default.
- W1570342265 hasRelatedWork W2071648365 @default.
- W1570342265 hasRelatedWork W2171316869 @default.
- W1570342265 hasRelatedWork W2233343535 @default.
- W1570342265 hasRelatedWork W2810172614 @default.
- W1570342265 hasRelatedWork W3000460030 @default.
- W1570342265 hasRelatedWork W3197078026 @default.
- W1570342265 isParatext "false" @default.
- W1570342265 isRetracted "false" @default.
- W1570342265 magId "1570342265" @default.
- W1570342265 workType "book-chapter" @default.