Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570353401> ?p ?o ?g. }
- W1570353401 endingPage "323" @default.
- W1570353401 startingPage "311" @default.
- W1570353401 abstract "Spectroscopic studies of Mars analog materials combining multiple spectral ranges and techniques are necessary in order to obtain ground truth information for interpretation of rocks and soils on Mars. Two hydrothermal rocks from Yellowstone National Park, Wyoming, were characterized here because they contain minerals requiring water for formation and they provide a possible niche for some of the earliest organisms on Earth. If related rocks formed in hydrothermal sites on Mars, identification of these would be important for understanding the geology of the planet and potential habitability for life. XRD, thermal properties, VNIR, mid-IR, and Raman spectroscopy were employed to identify the mineralogy of the samples in this study. The rocks studied here include a travertine from Mammoth Formation that contains primarily calcite with some aragonite and gypsum and a siliceous sinter from Octopus Spring that contains a variety of poorly crystalline to amorphous silicate minerals. Calcite was detected readily in the travertine rock using any one of the techniques studied. The small amount of gypsum was uniquely identified using XRD, VNIR, and mid-IR, while the aragonite was uniquely identified using XRD and Raman. The siliceous sinter sample was more difficult to characterize using each of these techniques and a combination of all techniques was more useful than any single technique. Although XRD is the historical standard for mineral identification, it presents some challenges for remote investigations. Thermal properties are most useful for minerals with discrete thermal transitions. Raman spectroscopy is most effective for detecting polarized species such as CO3, OH, and CH, and exhibits sharp bands for most highly crystalline minerals when abundant. Mid-IR spectroscopy is most useful in characterizing Si-O (and metal-O) bonds and also has the advantage that remote information about sample texture (e.g., particle size) can be determined. Mid-IR spectroscopy is also sensitive to structural OH, CO3, and SO4 bonds when abundant. VNIR spectroscopy is best for characterizing metal excitational bands and water, and is also a good technique for identification of structural OH, CO3, SO4, or CH bonds. Combining multiple techniques provides the most comprehensive information about mineralogy because of the different selection rules and particle size sensitivities, in addition to maximum coverage of excitational and vibrational bands at all wavelengths. This study of hydrothermal rocks from Yellowstone provides insights on how to combine information from multiple instruments to identify mineralogy and hence evidence of water on Mars." @default.
- W1570353401 created "2016-06-24" @default.
- W1570353401 creator A5043210279 @default.
- W1570353401 creator A5053685456 @default.
- W1570353401 creator A5058709464 @default.
- W1570353401 creator A5061692002 @default.
- W1570353401 date "2004-06-01" @default.
- W1570353401 modified "2023-09-25" @default.
- W1570353401 title "Multiple techniques for mineral identification on Mars:" @default.
- W1570353401 cites W106615324 @default.
- W1570353401 cites W1852865358 @default.
- W1570353401 cites W1964953130 @default.
- W1570353401 cites W1967394581 @default.
- W1570353401 cites W1978324930 @default.
- W1570353401 cites W1979984857 @default.
- W1570353401 cites W1981586527 @default.
- W1570353401 cites W1982099760 @default.
- W1570353401 cites W1986530877 @default.
- W1570353401 cites W1989872866 @default.
- W1570353401 cites W1993614768 @default.
- W1570353401 cites W1995930921 @default.
- W1570353401 cites W1996544583 @default.
- W1570353401 cites W1997511765 @default.
- W1570353401 cites W2007640639 @default.
- W1570353401 cites W2013703724 @default.
- W1570353401 cites W2015850759 @default.
- W1570353401 cites W2020598451 @default.
- W1570353401 cites W2033752530 @default.
- W1570353401 cites W2035129310 @default.
- W1570353401 cites W2041363644 @default.
- W1570353401 cites W2050077437 @default.
- W1570353401 cites W2053086067 @default.
- W1570353401 cites W2053474387 @default.
- W1570353401 cites W2056491064 @default.
- W1570353401 cites W2062081790 @default.
- W1570353401 cites W2070403981 @default.
- W1570353401 cites W2072533299 @default.
- W1570353401 cites W2077441391 @default.
- W1570353401 cites W2077874280 @default.
- W1570353401 cites W2078435638 @default.
- W1570353401 cites W2080317646 @default.
- W1570353401 cites W2088240336 @default.
- W1570353401 cites W2091469696 @default.
- W1570353401 cites W2093411061 @default.
- W1570353401 cites W2094071814 @default.
- W1570353401 cites W2095420016 @default.
- W1570353401 cites W2103431830 @default.
- W1570353401 cites W2103811807 @default.
- W1570353401 cites W2104411981 @default.
- W1570353401 cites W2105924554 @default.
- W1570353401 cites W2107616450 @default.
- W1570353401 cites W2110364701 @default.
- W1570353401 cites W2110953387 @default.
- W1570353401 cites W2116302794 @default.
- W1570353401 cites W2123844076 @default.
- W1570353401 cites W2130404525 @default.
- W1570353401 cites W2130471417 @default.
- W1570353401 cites W2135099653 @default.
- W1570353401 cites W2141578665 @default.
- W1570353401 cites W2146220157 @default.
- W1570353401 cites W2155733474 @default.
- W1570353401 cites W2159827469 @default.
- W1570353401 cites W2159989667 @default.
- W1570353401 cites W2160120792 @default.
- W1570353401 cites W2160163191 @default.
- W1570353401 cites W2169094791 @default.
- W1570353401 cites W2170177868 @default.
- W1570353401 cites W2171116265 @default.
- W1570353401 cites W2171595495 @default.
- W1570353401 doi "https://doi.org/10.1016/j.icarus.2003.12.025" @default.
- W1570353401 hasPublicationYear "2004" @default.
- W1570353401 type Work @default.
- W1570353401 sameAs 1570353401 @default.
- W1570353401 citedByCount "51" @default.
- W1570353401 countsByYear W15703534012012 @default.
- W1570353401 countsByYear W15703534012013 @default.
- W1570353401 countsByYear W15703534012014 @default.
- W1570353401 countsByYear W15703534012016 @default.
- W1570353401 countsByYear W15703534012018 @default.
- W1570353401 countsByYear W15703534012019 @default.
- W1570353401 countsByYear W15703534012020 @default.
- W1570353401 countsByYear W15703534012021 @default.
- W1570353401 countsByYear W15703534012022 @default.
- W1570353401 countsByYear W15703534012023 @default.
- W1570353401 crossrefType "journal-article" @default.
- W1570353401 hasAuthorship W1570353401A5043210279 @default.
- W1570353401 hasAuthorship W1570353401A5053685456 @default.
- W1570353401 hasAuthorship W1570353401A5058709464 @default.
- W1570353401 hasAuthorship W1570353401A5061692002 @default.
- W1570353401 hasConcept C121332964 @default.
- W1570353401 hasConcept C127313418 @default.
- W1570353401 hasConcept C151730666 @default.
- W1570353401 hasConcept C156622251 @default.
- W1570353401 hasConcept C165205528 @default.
- W1570353401 hasConcept C17409809 @default.
- W1570353401 hasConcept C178790620 @default.
- W1570353401 hasConcept C185592680 @default.
- W1570353401 hasConcept C191897082 @default.