Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570376769> ?p ?o ?g. }
- W1570376769 abstract "Regeneration is unevenly spread throughout the animal kingdom. Some of the invertebrates have a very high regenerative capacity but the capacity to replace lost or damaged tissues in mammals is limited. Among the vertebrates, the aquatic salamanders are the champions of regeneration, being able to regenerate body parts such as their limbs, tail, and jaw. Understanding the celland molecular machinery underlying these events can in the end lead to improvements in the field of regenerative medicine. When a salamander limb is amputated, a so called blastema is formed at the tip of the stump. This is a mesenchymal growth zone, from where the cells for the new limb originate. The skeletal muscle is believed to contribute to the blastema and the newly formed limb during regeneration in salamanders. There are two possible mechanisms by which this could occur. First, the muscle reserve cells, satellite cells, become activated, and after subsequent expansion they incorporate in to the blastema. Second, the multinucleated muscle cell dedifferentiates in a cellularization process, forming several new progenitor cells that contribute to the regenerate. These two mechanisms are the subjects of study in this thesis. In the first paper, satellite cells were monitored during the regeneration of the salamander limb. The satellite cell population was found to be restored after several rounds of amputation/regeneration, demonstrating a robust mechanism to replenish this cell population. By genetically labeling satellite cell progeny with GFP, cells were traced during limb regeneration. The labeled cells were found to contribute to cartilage tissue as well as to muscle, suggesting that they have lineage switching potential. The satellite cell marker Pax7 was rapidly down regulated in the blastema, indicating that the blastema has a reprogramming activity. In the second paper, the link between injury and dedifferentiation of muscle was explored. Previously it was shown that the skeletal muscle fiber must suffer a direct cellular injury in order to dedifferentiate in vivo. This led us to hypothesize that a programmed cell death response initiated by the injury, is linked to the dedifferentiation of this cell type. In order to investigate this, cellular events were examined after treating the cells with a known cellularization inducer called myoseverin, and pro-apoptotic drugs. The responses after these treatments were found to be similar, they both evoked cellularization of the muscle cells, and this was preceded by features of an activated apoptotic machinery. By inhibiting the intrinsic pathway of the apoptotic machinery, cellularization was inhibited. Finally, dedifferentiated progeny generated by proapoptotic stimuli was found to be capable of reentering the cell cycle and proliferate. Together these results indicate that the injury is directly linked to dedifferentiation through the apoptotic machinery. LIST OF PUBLICATIONS I. Jamie I Morrison, Paula Borg, and Andras Simon (2010) Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. The FASEB Journal, vol. 24, no. 3 750-756 II. Sara Loof, Paula Borg, Jamie I Morrison, Bertrand Joseph, and Andras Simon Cellular dedifferentiation by a programmed cell death response. Manuscript." @default.
- W1570376769 created "2016-06-24" @default.
- W1570376769 creator A5003636124 @default.
- W1570376769 date "2012-03-06" @default.
- W1570376769 modified "2023-09-27" @default.
- W1570376769 title "Plasticity of salamander skeletal muscle cells" @default.
- W1570376769 cites W1572805438 @default.
- W1570376769 cites W1660042663 @default.
- W1570376769 cites W1710799813 @default.
- W1570376769 cites W1790995430 @default.
- W1570376769 cites W1964420304 @default.
- W1570376769 cites W1967080927 @default.
- W1570376769 cites W1969038150 @default.
- W1570376769 cites W1970097521 @default.
- W1570376769 cites W1972454810 @default.
- W1570376769 cites W1978159913 @default.
- W1570376769 cites W1981692093 @default.
- W1570376769 cites W1988257487 @default.
- W1570376769 cites W1989333293 @default.
- W1570376769 cites W1994142477 @default.
- W1570376769 cites W1996177324 @default.
- W1570376769 cites W1997389247 @default.
- W1570376769 cites W1998457769 @default.
- W1570376769 cites W1998970920 @default.
- W1570376769 cites W1999604714 @default.
- W1570376769 cites W2003742149 @default.
- W1570376769 cites W2006836569 @default.
- W1570376769 cites W2008333439 @default.
- W1570376769 cites W2009022704 @default.
- W1570376769 cites W2013796243 @default.
- W1570376769 cites W2014716519 @default.
- W1570376769 cites W2019101092 @default.
- W1570376769 cites W2026545247 @default.
- W1570376769 cites W2026641296 @default.
- W1570376769 cites W2026827807 @default.
- W1570376769 cites W2027909397 @default.
- W1570376769 cites W2029914169 @default.
- W1570376769 cites W2031495223 @default.
- W1570376769 cites W2033915160 @default.
- W1570376769 cites W2043306150 @default.
- W1570376769 cites W2046307275 @default.
- W1570376769 cites W2062094940 @default.
- W1570376769 cites W2066180106 @default.
- W1570376769 cites W2067646863 @default.
- W1570376769 cites W2078443370 @default.
- W1570376769 cites W2086358092 @default.
- W1570376769 cites W2087803244 @default.
- W1570376769 cites W2091548699 @default.
- W1570376769 cites W2100250587 @default.
- W1570376769 cites W2101986300 @default.
- W1570376769 cites W2116673807 @default.
- W1570376769 cites W2121504387 @default.
- W1570376769 cites W2123001330 @default.
- W1570376769 cites W2124593559 @default.
- W1570376769 cites W2125987139 @default.
- W1570376769 cites W2126747203 @default.
- W1570376769 cites W2127383554 @default.
- W1570376769 cites W2127925708 @default.
- W1570376769 cites W2127934004 @default.
- W1570376769 cites W2128493164 @default.
- W1570376769 cites W2147392015 @default.
- W1570376769 cites W2149186578 @default.
- W1570376769 cites W2150761291 @default.
- W1570376769 cites W2151037856 @default.
- W1570376769 cites W2154041187 @default.
- W1570376769 cites W2157350771 @default.
- W1570376769 cites W2157735441 @default.
- W1570376769 cites W2158797557 @default.
- W1570376769 cites W2167491747 @default.
- W1570376769 cites W2171130969 @default.
- W1570376769 cites W2300679683 @default.
- W1570376769 cites W271360225 @default.
- W1570376769 hasPublicationYear "2012" @default.
- W1570376769 type Work @default.
- W1570376769 sameAs 1570376769 @default.
- W1570376769 citedByCount "0" @default.
- W1570376769 crossrefType "journal-article" @default.
- W1570376769 hasAuthorship W1570376769A5003636124 @default.
- W1570376769 hasConcept C105702510 @default.
- W1570376769 hasConcept C171056886 @default.
- W1570376769 hasConcept C18903297 @default.
- W1570376769 hasConcept C201750760 @default.
- W1570376769 hasConcept C2779959927 @default.
- W1570376769 hasConcept C2779999439 @default.
- W1570376769 hasConcept C2780205056 @default.
- W1570376769 hasConcept C28328180 @default.
- W1570376769 hasConcept C2908647359 @default.
- W1570376769 hasConcept C71924100 @default.
- W1570376769 hasConcept C78214289 @default.
- W1570376769 hasConcept C86803240 @default.
- W1570376769 hasConcept C95444343 @default.
- W1570376769 hasConcept C99454951 @default.
- W1570376769 hasConceptScore W1570376769C105702510 @default.
- W1570376769 hasConceptScore W1570376769C171056886 @default.
- W1570376769 hasConceptScore W1570376769C18903297 @default.
- W1570376769 hasConceptScore W1570376769C201750760 @default.
- W1570376769 hasConceptScore W1570376769C2779959927 @default.
- W1570376769 hasConceptScore W1570376769C2779999439 @default.
- W1570376769 hasConceptScore W1570376769C2780205056 @default.
- W1570376769 hasConceptScore W1570376769C28328180 @default.