Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570456448> ?p ?o ?g. }
- W1570456448 endingPage "213" @default.
- W1570456448 startingPage "191" @default.
- W1570456448 abstract "Abstract The Sn–W mineralized Mole Granite in Eastern Australia hosts zircon populations that crystallized at several stages during a protracted magmatic to hydrothermal evolution. Thirty-four elements have been quantified by laser-ablation inductively-coupled-plasma mass-spectrometric microanalysis with the aim of relating the chemistry of zircon to its growth environment. Trace element contents are highly variable for all textural occurrences. Zircon inclusions in earliest quartz phenocryst suggest that zircon was a liquidus phase that crystallized probably deep in the crust. Trace element contents are conspicuously high, showing only a slight positive Ce anomaly but a pronounced negative Eu-anomaly. Successive crystallization stages of magmatic zircon are characterized by progressive depletion in trace element contents, notably the rare earth elements, with an increasingly important positive Ce-anomaly. This evolution reflects saturation of REE accepting minerals such as monazite, thorite, xenotime and possibly apatite and is affected little by the exsolution of a magmatic–hydrothermal fluid. Zircon that is interpreted to have precipitated from aqueous fluids in Sn–W-bearing quartz veins shows REE patterns indistinguishable from those of late magmatic zircon. When combined with experimental evidence on the fluid–melt partitioning of REE, it indicates that the REE distribution coefficients for zircon/melt and zircon/fluid are largely comparable. The second example of hydrothermal zircon crystallized some 2 My after the host granite. These crystals reveal an intragranular zonation of increasing trace element concentrations from core to rim. Therefore, REE abundances and patterns alone are not conclusive indicators of the geological environment in which zircon crystallized. Nevertheless, variations in trace element contents of zircon that relate to the chemistry of the melt or fluid from which zircon crystallized, as measured in cogenetic melt and fluid inclusions, are promising for future petrogenetic modeling. Lead and Cs are strongly incompatible in hydrothermal zircon, with estimated zircon–fluid distribution coefficients D ≤ 0.001, while Sn and Li are moderately incompatible, D Sn ∼ 0.6 and D Li ∼ 0.1, and Ce is compatible, D Ce ∼ 14. Moreover, hydrothermal zircon has a more pronounced negative Eu-anomaly and higher Ta/Nb and U/Th ratios than the magmatic zircons of the Mole Granite." @default.
- W1570456448 created "2016-06-24" @default.
- W1570456448 creator A5024299583 @default.
- W1570456448 creator A5026003233 @default.
- W1570456448 creator A5066572736 @default.
- W1570456448 creator A5077316743 @default.
- W1570456448 date "2005-08-01" @default.
- W1570456448 modified "2023-10-03" @default.
- W1570456448 title "Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia)" @default.
- W1570456448 cites W1869545340 @default.
- W1570456448 cites W1932031912 @default.
- W1570456448 cites W1946565071 @default.
- W1570456448 cites W1969105720 @default.
- W1570456448 cites W1969859799 @default.
- W1570456448 cites W1973124747 @default.
- W1570456448 cites W1974336211 @default.
- W1570456448 cites W1975692935 @default.
- W1570456448 cites W1977795491 @default.
- W1570456448 cites W1987089565 @default.
- W1570456448 cites W1988567106 @default.
- W1570456448 cites W2000886616 @default.
- W1570456448 cites W2006991603 @default.
- W1570456448 cites W2013814586 @default.
- W1570456448 cites W2017496723 @default.
- W1570456448 cites W2020139762 @default.
- W1570456448 cites W2021980939 @default.
- W1570456448 cites W2025746220 @default.
- W1570456448 cites W2028048720 @default.
- W1570456448 cites W2029473578 @default.
- W1570456448 cites W2030315855 @default.
- W1570456448 cites W2032087003 @default.
- W1570456448 cites W2036447894 @default.
- W1570456448 cites W2037588390 @default.
- W1570456448 cites W2038019149 @default.
- W1570456448 cites W2045731242 @default.
- W1570456448 cites W2049366175 @default.
- W1570456448 cites W2052348573 @default.
- W1570456448 cites W2058642293 @default.
- W1570456448 cites W2065940550 @default.
- W1570456448 cites W2069152170 @default.
- W1570456448 cites W2071856956 @default.
- W1570456448 cites W2072062807 @default.
- W1570456448 cites W2072837612 @default.
- W1570456448 cites W2075348117 @default.
- W1570456448 cites W2088942299 @default.
- W1570456448 cites W2094681559 @default.
- W1570456448 cites W2098235917 @default.
- W1570456448 cites W2124726938 @default.
- W1570456448 cites W2154045529 @default.
- W1570456448 cites W2157181776 @default.
- W1570456448 cites W2158868271 @default.
- W1570456448 cites W2161090395 @default.
- W1570456448 doi "https://doi.org/10.1016/j.chemgeo.2005.02.017" @default.
- W1570456448 hasPublicationYear "2005" @default.
- W1570456448 type Work @default.
- W1570456448 sameAs 1570456448 @default.
- W1570456448 citedByCount "204" @default.
- W1570456448 countsByYear W15704564482012 @default.
- W1570456448 countsByYear W15704564482013 @default.
- W1570456448 countsByYear W15704564482014 @default.
- W1570456448 countsByYear W15704564482015 @default.
- W1570456448 countsByYear W15704564482016 @default.
- W1570456448 countsByYear W15704564482017 @default.
- W1570456448 countsByYear W15704564482018 @default.
- W1570456448 countsByYear W15704564482019 @default.
- W1570456448 countsByYear W15704564482020 @default.
- W1570456448 countsByYear W15704564482021 @default.
- W1570456448 countsByYear W15704564482022 @default.
- W1570456448 countsByYear W15704564482023 @default.
- W1570456448 crossrefType "journal-article" @default.
- W1570456448 hasAuthorship W1570456448A5024299583 @default.
- W1570456448 hasAuthorship W1570456448A5026003233 @default.
- W1570456448 hasAuthorship W1570456448A5066572736 @default.
- W1570456448 hasAuthorship W1570456448A5077316743 @default.
- W1570456448 hasBestOaLocation W15704564482 @default.
- W1570456448 hasConcept C127313418 @default.
- W1570456448 hasConcept C127413603 @default.
- W1570456448 hasConcept C151730666 @default.
- W1570456448 hasConcept C156622251 @default.
- W1570456448 hasConcept C17409809 @default.
- W1570456448 hasConcept C199289684 @default.
- W1570456448 hasConcept C203036418 @default.
- W1570456448 hasConcept C42360764 @default.
- W1570456448 hasConceptScore W1570456448C127313418 @default.
- W1570456448 hasConceptScore W1570456448C127413603 @default.
- W1570456448 hasConceptScore W1570456448C151730666 @default.
- W1570456448 hasConceptScore W1570456448C156622251 @default.
- W1570456448 hasConceptScore W1570456448C17409809 @default.
- W1570456448 hasConceptScore W1570456448C199289684 @default.
- W1570456448 hasConceptScore W1570456448C203036418 @default.
- W1570456448 hasConceptScore W1570456448C42360764 @default.
- W1570456448 hasIssue "3-4" @default.
- W1570456448 hasLocation W15704564481 @default.
- W1570456448 hasLocation W15704564482 @default.
- W1570456448 hasOpenAccess W1570456448 @default.
- W1570456448 hasPrimaryLocation W15704564481 @default.
- W1570456448 hasRelatedWork W1986055120 @default.
- W1570456448 hasRelatedWork W1986583923 @default.