Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570544052> ?p ?o ?g. }
- W1570544052 abstract "In the Information Age, a proliferation of unstructured text electronic documents exists. Processing these documents by humans is a daunting task as humans have limited cognitive abilities for processing large volumes of documents that can often be extremely lengthy. To address this problem, text data computer algorithms are being developed. Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are two text data computer algorithms that have received much attention individually in the text data literature for topic extraction studies but not for document classification nor for comparison studies. Since classification is considered an important human function and has been studied in the areas of cognitive science and information science, in this dissertation a research study was performed to compare LDA, LSA and humans as document classifiers. The research questions posed in this study are: R1: How accurate is LDA and LSA in classifying documents in a corpus of textual data over a known set of topics? R2: How accurate are humans in performing the same classification task? R3: How does LDA classification performance compare to LSA classification performance? To address these questions, a classification study involving human subjects was designed where humans were asked to generate and classify documents (customer comments) at two levels of abstraction for a quality assurance setting. Then two computer algorithms, LSA and LDA, were used to perform classification on these documents. The results indicate that humans outperformed all computer algorithms and had an accuracy rate of 94% at the higher level of abstraction and 76% at the lower level of abstraction. At the high level of abstraction, the accuracy rates were 84% for both LSA and LDA and at the lower level, the accuracy rate were 67% for LSA and 64% for LDA. The findings of this research have many strong implications for the improvement of information systems that process unstructured text. Document classifiers have many potential applications in many fields (e.g., fraud detection, information retrieval, national security, and customer management). Development and refinement of algorithms that classify text is a fruitful area of ongoing research and this dissertation contributes to this area." @default.
- W1570544052 created "2016-06-24" @default.
- W1570544052 creator A5036402295 @default.
- W1570544052 date "2011-12-01" @default.
- W1570544052 modified "2023-09-28" @default.
- W1570544052 title "Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as Classifiers" @default.
- W1570544052 cites W113337368 @default.
- W1570544052 cites W1493285195 @default.
- W1570544052 cites W1502564108 @default.
- W1570544052 cites W1517398176 @default.
- W1570544052 cites W1533673733 @default.
- W1570544052 cites W1535030269 @default.
- W1570544052 cites W1572615921 @default.
- W1570544052 cites W1576604406 @default.
- W1570544052 cites W1589103605 @default.
- W1570544052 cites W1593249691 @default.
- W1570544052 cites W1603920809 @default.
- W1570544052 cites W1808716357 @default.
- W1570544052 cites W1880262756 @default.
- W1570544052 cites W1974239188 @default.
- W1570544052 cites W1975879668 @default.
- W1570544052 cites W1978429424 @default.
- W1570544052 cites W1979455727 @default.
- W1570544052 cites W1983578042 @default.
- W1570544052 cites W1996593717 @default.
- W1570544052 cites W2001082470 @default.
- W1570544052 cites W2002079507 @default.
- W1570544052 cites W2004185482 @default.
- W1570544052 cites W2005406133 @default.
- W1570544052 cites W2005422315 @default.
- W1570544052 cites W2012744959 @default.
- W1570544052 cites W2018124860 @default.
- W1570544052 cites W2024228866 @default.
- W1570544052 cites W2024311997 @default.
- W1570544052 cites W2026368098 @default.
- W1570544052 cites W2026973491 @default.
- W1570544052 cites W2028369414 @default.
- W1570544052 cites W2028689748 @default.
- W1570544052 cites W2028971179 @default.
- W1570544052 cites W2035451558 @default.
- W1570544052 cites W2037011669 @default.
- W1570544052 cites W2042137593 @default.
- W1570544052 cites W2054215414 @default.
- W1570544052 cites W2060695172 @default.
- W1570544052 cites W2063392856 @default.
- W1570544052 cites W2067242602 @default.
- W1570544052 cites W2072762935 @default.
- W1570544052 cites W2072999572 @default.
- W1570544052 cites W2074223669 @default.
- W1570544052 cites W2076069839 @default.
- W1570544052 cites W2077837651 @default.
- W1570544052 cites W2082385556 @default.
- W1570544052 cites W2082392932 @default.
- W1570544052 cites W2082929796 @default.
- W1570544052 cites W2086618114 @default.
- W1570544052 cites W2092291497 @default.
- W1570544052 cites W2092842141 @default.
- W1570544052 cites W2102578078 @default.
- W1570544052 cites W2103003088 @default.
- W1570544052 cites W2103295343 @default.
- W1570544052 cites W2103945854 @default.
- W1570544052 cites W2106925043 @default.
- W1570544052 cites W2109679423 @default.
- W1570544052 cites W2111276489 @default.
- W1570544052 cites W2126423894 @default.
- W1570544052 cites W2129144539 @default.
- W1570544052 cites W2129668249 @default.
- W1570544052 cites W2131742288 @default.
- W1570544052 cites W2132089731 @default.
- W1570544052 cites W2132966115 @default.
- W1570544052 cites W2134504674 @default.
- W1570544052 cites W2134731454 @default.
- W1570544052 cites W2140190241 @default.
- W1570544052 cites W2142965780 @default.
- W1570544052 cites W2144242878 @default.
- W1570544052 cites W2145241906 @default.
- W1570544052 cites W2150261309 @default.
- W1570544052 cites W2152073763 @default.
- W1570544052 cites W2156909104 @default.
- W1570544052 cites W2158266063 @default.
- W1570544052 cites W2161328900 @default.
- W1570544052 cites W2164777277 @default.
- W1570544052 cites W2165612380 @default.
- W1570544052 cites W2166023018 @default.
- W1570544052 cites W2169792636 @default.
- W1570544052 cites W2177050238 @default.
- W1570544052 cites W218750280 @default.
- W1570544052 cites W2230617527 @default.
- W1570544052 cites W2334889010 @default.
- W1570544052 cites W2411873390 @default.
- W1570544052 cites W2474958513 @default.
- W1570544052 cites W2520517699 @default.
- W1570544052 cites W2889332206 @default.
- W1570544052 cites W59531631 @default.
- W1570544052 cites W599503780 @default.
- W1570544052 cites W2063104949 @default.
- W1570544052 cites W2134331676 @default.
- W1570544052 cites W2501290936 @default.
- W1570544052 hasPublicationYear "2011" @default.
- W1570544052 type Work @default.