Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570557922> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W1570557922 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an algebraically closed field. Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Lamda> <mml:semantics> <mml:mi mathvariant=normal>Λ<!-- Λ --></mml:mi> <mml:annotation encoding=application/x-tex>Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a noetherian commutative ring annihilated by an integer invertible in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script l> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=application/x-tex>ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime number different from the characteristic of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a separated algebraic space of finite type over <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> endowed with an action of a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebraic group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the equivariant étale cohomology algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H Superscript asterisk Baseline left-parenthesis left-bracket upper X slash upper G right-bracket comma normal upper Lamda right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mo stretchy=false>[</mml:mo> <mml:mi>X</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=false>]</mml:mo> <mml:mo>,</mml:mo> <mml:mi mathvariant=normal>Λ<!-- Λ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>H^*([X/G],Lambda )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-bracket upper X slash upper G right-bracket> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>[</mml:mo> <mml:mi>X</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=false>]</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>[X/G]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the quotient stack of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is finitely generated over <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper Lamda> <mml:semantics> <mml:mi mathvariant=normal>Λ<!-- Λ --></mml:mi> <mml:annotation encoding=application/x-tex>Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Moreover, for coefficients <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K element-of upper D Subscript c Superscript plus Baseline left-parenthesis left-bracket upper X slash upper G right-bracket comma double-struck upper F Subscript script l Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msubsup> <mml:mi>D</mml:mi> <mml:mi>c</mml:mi> <mml:mo>+</mml:mo> </mml:msubsup> <mml:mo stretchy=false>(</mml:mo> <mml:mo stretchy=false>[</mml:mo> <mml:mi>X</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=false>]</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>F</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ℓ<!-- ℓ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>K in D^+_c([X/G],mathbb {F}_{ell })</mml:annotation> </mml:semantics> </mml:math> </inline-formula> endowed with a commutative multiplicative structure, we establish a structure theorem for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H Superscript asterisk Baseline left-parenthesis left-bracket upper X slash upper G right-bracket comma upper K right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mo stretchy=false>[</mml:mo> <mml:mi>X</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mo stretchy=false>]</mml:mo> <mml:mo>,</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>H^*([X/G],K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, involving fixed points of elementary abelian <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script l> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=application/x-tex>ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-subgroups of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which is similar to Quillen’s theorem in the case <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K equals double-struck upper F Subscript script l> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>F</mml:mi> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>ℓ<!-- ℓ --></mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>K = mathbb {F}_{ell }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. One key ingredient in our proof of the structure theorem is an analysis of specialization of points of the quotient stack. We also discuss variants and generalizations for certain Artin stacks." @default.
- W1570557922 created "2016-06-24" @default.
- W1570557922 creator A5006713890 @default.
- W1570557922 creator A5012253929 @default.
- W1570557922 date "2016-02-10" @default.
- W1570557922 modified "2023-10-18" @default.
- W1570557922 title "Quotient stacks and equivariant étale cohomology algebras: Quillen’s theory revisited" @default.
- W1570557922 cites W1480220833 @default.
- W1570557922 cites W1820855998 @default.
- W1570557922 cites W1973370998 @default.
- W1570557922 cites W1978444638 @default.
- W1570557922 cites W1993479718 @default.
- W1570557922 cites W2033892501 @default.
- W1570557922 cites W2046092264 @default.
- W1570557922 cites W2053295893 @default.
- W1570557922 cites W2057221822 @default.
- W1570557922 cites W2068995536 @default.
- W1570557922 cites W2069989543 @default.
- W1570557922 cites W2074129703 @default.
- W1570557922 cites W2087293935 @default.
- W1570557922 cites W2089521132 @default.
- W1570557922 cites W2126300011 @default.
- W1570557922 cites W2328632474 @default.
- W1570557922 cites W2478043400 @default.
- W1570557922 cites W2963115857 @default.
- W1570557922 cites W2964290280 @default.
- W1570557922 cites W3101497654 @default.
- W1570557922 cites W3102649430 @default.
- W1570557922 cites W410485281 @default.
- W1570557922 cites W4234505739 @default.
- W1570557922 cites W4239696956 @default.
- W1570557922 cites W4244873481 @default.
- W1570557922 cites W4292312659 @default.
- W1570557922 cites W589815244 @default.
- W1570557922 cites W592792116 @default.
- W1570557922 doi "https://doi.org/10.1090/jag/674" @default.
- W1570557922 hasPublicationYear "2016" @default.
- W1570557922 type Work @default.
- W1570557922 sameAs 1570557922 @default.
- W1570557922 citedByCount "6" @default.
- W1570557922 countsByYear W15705579222015 @default.
- W1570557922 countsByYear W15705579222018 @default.
- W1570557922 countsByYear W15705579222019 @default.
- W1570557922 countsByYear W15705579222020 @default.
- W1570557922 crossrefType "journal-article" @default.
- W1570557922 hasAuthorship W1570557922A5006713890 @default.
- W1570557922 hasAuthorship W1570557922A5012253929 @default.
- W1570557922 hasBestOaLocation W15705579221 @default.
- W1570557922 hasConcept C114614502 @default.
- W1570557922 hasConcept C118615104 @default.
- W1570557922 hasConcept C134306372 @default.
- W1570557922 hasConcept C136119220 @default.
- W1570557922 hasConcept C136170076 @default.
- W1570557922 hasConcept C199422724 @default.
- W1570557922 hasConcept C202444582 @default.
- W1570557922 hasConcept C203701370 @default.
- W1570557922 hasConcept C2779057376 @default.
- W1570557922 hasConcept C33923547 @default.
- W1570557922 hasConcept C42747912 @default.
- W1570557922 hasConcept C96442724 @default.
- W1570557922 hasConceptScore W1570557922C114614502 @default.
- W1570557922 hasConceptScore W1570557922C118615104 @default.
- W1570557922 hasConceptScore W1570557922C134306372 @default.
- W1570557922 hasConceptScore W1570557922C136119220 @default.
- W1570557922 hasConceptScore W1570557922C136170076 @default.
- W1570557922 hasConceptScore W1570557922C199422724 @default.
- W1570557922 hasConceptScore W1570557922C202444582 @default.
- W1570557922 hasConceptScore W1570557922C203701370 @default.
- W1570557922 hasConceptScore W1570557922C2779057376 @default.
- W1570557922 hasConceptScore W1570557922C33923547 @default.
- W1570557922 hasConceptScore W1570557922C42747912 @default.
- W1570557922 hasConceptScore W1570557922C96442724 @default.
- W1570557922 hasLocation W15705579221 @default.
- W1570557922 hasLocation W15705579222 @default.
- W1570557922 hasOpenAccess W1570557922 @default.
- W1570557922 hasPrimaryLocation W15705579221 @default.
- W1570557922 hasRelatedWork W1522546683 @default.
- W1570557922 hasRelatedWork W1570557922 @default.
- W1570557922 hasRelatedWork W1813528644 @default.
- W1570557922 hasRelatedWork W1972361515 @default.
- W1570557922 hasRelatedWork W2015924048 @default.
- W1570557922 hasRelatedWork W2058107382 @default.
- W1570557922 hasRelatedWork W2107935237 @default.
- W1570557922 hasRelatedWork W2117678601 @default.
- W1570557922 hasRelatedWork W2118893669 @default.
- W1570557922 hasRelatedWork W2273901185 @default.
- W1570557922 hasRelatedWork W2414257641 @default.
- W1570557922 hasRelatedWork W2610525776 @default.
- W1570557922 hasRelatedWork W2616374665 @default.
- W1570557922 hasRelatedWork W2756736488 @default.
- W1570557922 hasRelatedWork W2792716741 @default.
- W1570557922 hasRelatedWork W2950524088 @default.
- W1570557922 hasRelatedWork W2962838331 @default.
- W1570557922 hasRelatedWork W2963521372 @default.
- W1570557922 hasRelatedWork W2964695827 @default.
- W1570557922 hasRelatedWork W3030595571 @default.
- W1570557922 isParatext "false" @default.
- W1570557922 isRetracted "false" @default.
- W1570557922 magId "1570557922" @default.
- W1570557922 workType "article" @default.