Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570558191> ?p ?o ?g. }
- W1570558191 abstract "Many computer vision problems can be formulated as graph partition problems that minimize energy functions. Generally applicable algorithms like the Gibbs sampler can perform the minimization task, but they are very slow to converge, especially since the graphs in vision tasks are large (105–10 6 nodes). On the other hand, computationally effective algorithms like Graph Cuts and Belief Propagation are specialized to particular forms of energy functions, and they cannot be applied for complex statistical models using generative models and high-order priors. In this thesis, a new stochastic algorithm capable of sampling arbitrary energy functions defined on graph partitions is presented. To increase efficiency, the algorithm uses the image information to make informed jumps in the search space. The image information is given in the form of edge weights and represents an empirical probability that the nodes connected by the edge belong to the same object. At each step, the algorithm creates clusters of nodes by turning on/off the edges randomly according to their weights, and changes the label of all nodes in one cluster (connected component) in a single move. Each move is accepted or rejected according to an acceptance probability given by a simple and explicit equation. The algorithm is applied to 4 important problems in computer vision: image segmentation, perceptual organization, stereo matching and motion segmentation. To address different computational or representational issues, multi-grid, multi-level and multi-cue variants of the algorithm are presented. In image segmentation, the algorithm's performance is compared to the Gibbs sampler, while in stereo matching, it is compared to Graph Cuts and Belief Propagation." @default.
- W1570558191 created "2016-06-24" @default.
- W1570558191 creator A5034228010 @default.
- W1570558191 creator A5052175239 @default.
- W1570558191 date "2005-01-01" @default.
- W1570558191 modified "2023-09-23" @default.
- W1570558191 title "Cluster sampling and its applications to segmentation, stereo and motion" @default.
- W1570558191 cites W1522816836 @default.
- W1570558191 cites W1559427309 @default.
- W1570558191 cites W1649464328 @default.
- W1570558191 cites W186419298 @default.
- W1570558191 cites W1965710639 @default.
- W1570558191 cites W1969466749 @default.
- W1570558191 cites W1969758109 @default.
- W1570558191 cites W1971784203 @default.
- W1570558191 cites W1979622972 @default.
- W1570558191 cites W1986557010 @default.
- W1570558191 cites W2002053404 @default.
- W1570558191 cites W2019473674 @default.
- W1570558191 cites W2020999234 @default.
- W1570558191 cites W2023502716 @default.
- W1570558191 cites W2024060531 @default.
- W1570558191 cites W2037139490 @default.
- W1570558191 cites W2043432627 @default.
- W1570558191 cites W2050032036 @default.
- W1570558191 cites W2056760934 @default.
- W1570558191 cites W2063266501 @default.
- W1570558191 cites W2068674173 @default.
- W1570558191 cites W2069739265 @default.
- W1570558191 cites W2077990749 @default.
- W1570558191 cites W2095611100 @default.
- W1570558191 cites W2095783300 @default.
- W1570558191 cites W2098678088 @default.
- W1570558191 cites W2101309634 @default.
- W1570558191 cites W2104974755 @default.
- W1570558191 cites W2106110775 @default.
- W1570558191 cites W2106257280 @default.
- W1570558191 cites W2106706098 @default.
- W1570558191 cites W2114593990 @default.
- W1570558191 cites W2121927366 @default.
- W1570558191 cites W2121947440 @default.
- W1570558191 cites W2132603077 @default.
- W1570558191 cites W2137017911 @default.
- W1570558191 cites W2138309709 @default.
- W1570558191 cites W2143075689 @default.
- W1570558191 cites W2143516773 @default.
- W1570558191 cites W2147710758 @default.
- W1570558191 cites W2151646056 @default.
- W1570558191 cites W2155479981 @default.
- W1570558191 cites W2156094048 @default.
- W1570558191 cites W2159793005 @default.
- W1570558191 cites W2165544906 @default.
- W1570558191 cites W2167717741 @default.
- W1570558191 cites W2169282664 @default.
- W1570558191 cites W2173487902 @default.
- W1570558191 cites W2913192828 @default.
- W1570558191 hasPublicationYear "2005" @default.
- W1570558191 type Work @default.
- W1570558191 sameAs 1570558191 @default.
- W1570558191 citedByCount "0" @default.
- W1570558191 crossrefType "journal-article" @default.
- W1570558191 hasAuthorship W1570558191A5034228010 @default.
- W1570558191 hasAuthorship W1570558191A5052175239 @default.
- W1570558191 hasConcept C107673813 @default.
- W1570558191 hasConcept C11413529 @default.
- W1570558191 hasConcept C124504099 @default.
- W1570558191 hasConcept C154945302 @default.
- W1570558191 hasConcept C177769412 @default.
- W1570558191 hasConcept C31972630 @default.
- W1570558191 hasConcept C33923547 @default.
- W1570558191 hasConcept C41008148 @default.
- W1570558191 hasConcept C89600930 @default.
- W1570558191 hasConceptScore W1570558191C107673813 @default.
- W1570558191 hasConceptScore W1570558191C11413529 @default.
- W1570558191 hasConceptScore W1570558191C124504099 @default.
- W1570558191 hasConceptScore W1570558191C154945302 @default.
- W1570558191 hasConceptScore W1570558191C177769412 @default.
- W1570558191 hasConceptScore W1570558191C31972630 @default.
- W1570558191 hasConceptScore W1570558191C33923547 @default.
- W1570558191 hasConceptScore W1570558191C41008148 @default.
- W1570558191 hasConceptScore W1570558191C89600930 @default.
- W1570558191 hasLocation W15705581911 @default.
- W1570558191 hasOpenAccess W1570558191 @default.
- W1570558191 hasPrimaryLocation W15705581911 @default.
- W1570558191 hasRelatedWork W1524350667 @default.
- W1570558191 hasRelatedWork W1597534740 @default.
- W1570558191 hasRelatedWork W1611855301 @default.
- W1570558191 hasRelatedWork W1827832726 @default.
- W1570558191 hasRelatedWork W1966110415 @default.
- W1570558191 hasRelatedWork W2014237445 @default.
- W1570558191 hasRelatedWork W2087194382 @default.
- W1570558191 hasRelatedWork W2109746662 @default.
- W1570558191 hasRelatedWork W2120804060 @default.
- W1570558191 hasRelatedWork W2126789858 @default.
- W1570558191 hasRelatedWork W2130774236 @default.
- W1570558191 hasRelatedWork W2147899407 @default.
- W1570558191 hasRelatedWork W2150560146 @default.
- W1570558191 hasRelatedWork W2543959933 @default.
- W1570558191 hasRelatedWork W2889658189 @default.
- W1570558191 hasRelatedWork W3044063956 @default.