Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570621415> ?p ?o ?g. }
- W1570621415 endingPage "238" @default.
- W1570621415 startingPage "231" @default.
- W1570621415 abstract "SummaryThis review covers the functional features of the fibrinogen γ chains including their participation in fibrin polymerization and cross-linking, their role in the initiation of fibrinolysis, their binding and regulation of factor XIII activity, their interactions with platelets and other cells, and their role in mediating thrombin binding to fibrin, a thrombin inhibitory function termed ‘antithrombin I’. This review covers the functional features of the fibrinogen γ chains including their participation in fibrin polymerization and cross-linking, their role in the initiation of fibrinolysis, their binding and regulation of factor XIII activity, their interactions with platelets and other cells, and their role in mediating thrombin binding to fibrin, a thrombin inhibitory function termed ‘antithrombin I’. In this review I will cover the functional features of the γ chains of fibrinogen, including their participation in fibrin polymerization and cross-linking, the initiation of fibrinolysis, their role in binding and regulating factor XIII activity, their interactions with platelets and other cells, and their role in mediating thrombin binding to fibrin, an inhibitory function originally termed ‘antithrombin I’. Emphasis is placed on more recently studied or somewhat less well known aspects of γ chain function. To round out the presentation I also included sufficient additional information or background on the other fibrinogen chains and their collaborative activities with γ chains. Fibrinogen molecules are elongated 45 nm structures consisting of two outer D domains, each connected by a coiled-coil segment to a central E domain (Fig. 1). They are comprised of two sets of three polypeptide chains termed Aα, Bβ, and γ[1Henschen A. Lottspeich F. Kehl M. Southan C. Covalent structure of fibrinogen.Ann NY Acad Sci. 1983; 408: 28-43Crossref PubMed Google Scholar], which are joined together within the N-terminal E domain by five symmetrical disulfide bridges, one pair at Aα 28, two pairs between Αα36 and Bβ65, and a third pair of reciprocally bridged ã chains at γ8 and γ9 [2Blombäck B. Hessel B. Hogg D. Disulfide bridges in NH2-terminal part of human fibrinogen.Thromb Res. 1976; 8: 639-58Abstract Full Text PDF PubMed Google Scholar, 3Huang S. Cao Z. Davie EW. The role of amino-terminal disulfide bonds in the structure and assembly of human fibrinogen.Biochem Biophys Res Commun. 1993; 190: 488-95Crossref PubMed Scopus (0) Google Scholar, 4Zhang J.-.Z. Redman CM. Identification of Bβ chain domains involved in human fibrinogen assembly.J Biol Chem. 1992; 267: 21727-32Abstract Full Text PDF PubMed Google Scholar, 5Hoeprich Jr, P.D. Doolittle RF. Dimeric half-molecules of human fibrinogen are joined through disulfide bonds in an antiparallel orientation.Biochemistry. 1983; 22: 2049-55Crossref PubMed Google Scholar]. It is not yet clear how these reciprocally bridged chains contribute to the symmetry of the fibrinogen molecule. Other non-symmetrical interchain disulfide bridges in this region form a so-called ‘disulfide ring’[2Blombäck B. Hessel B. Hogg D. Disulfide bridges in NH2-terminal part of human fibrinogen.Thromb Res. 1976; 8: 639-58Abstract Full Text PDF PubMed Google Scholar, 4Zhang J.-.Z. Redman CM. Identification of Bβ chain domains involved in human fibrinogen assembly.J Biol Chem. 1992; 267: 21727-32Abstract Full Text PDF PubMed Google Scholar]. The Aα chain consists of 610, the Bβ chain 461, and the major form of the γ chain, γA, 411 residues [1Henschen A. Lottspeich F. Kehl M. Southan C. Covalent structure of fibrinogen.Ann NY Acad Sci. 1983; 408: 28-43Crossref PubMed Google Scholar]. A minor but nevertheless important γ chain variant termed γ′, arises through alternative processing of the primary mRNA transcript [6Chung D.W. Davie EW. γ and γ′ chains of human fibrinogen are produced by alternative mRNA processing.Biochemistry. 1984; 23: 4232-6Crossref PubMed Google Scholar], and amounts to ∼8% of the total fibrinogen γ chain population [7Mosesson M.W. Finlayson J.S. Umfleet RA. Human fibrinogen heterogeneities. III. Identification of γ chain variants.J Biol Chem. 1972; 247: 5223-7Abstract Full Text PDF PubMed Google Scholar]. γ′ chains contain 427 residues and differ from the platelet-binding γA chains in that the four ultimate C-terminal γA residues, AGDV411, are replaced by an anionic 20 amino acid sequence that includes two sulfated tyrosines [8Wolfenstein-Todel C. Mosesson MW. Carboxy-terminal amino acid sequence of a human fibrinogen γ chain variant (γ′).Biochemistry. 1981; 20: 6146-9Crossref PubMed Google Scholar, 9Meh D.A. Siebenlist K.R. Brennan S.O. Holyst T. Mosesson MW. The amino acid sequences in fibrin responsible for high affinity thrombin binding.Thromb Haemost. 2001; 85: 470-4Crossref PubMed Scopus (0) Google Scholar]. In plasma, heterodimeric fibrinogen molecules containing one γ′ chain and one γA chain (‘fibrinogen 2’) amount to about 15% of all circulating fibrinogen molecules, and are separable by ion exchange chromatography from homodimeric γA/γA fibrinogen molecules (‘fibrinogen 1’) [7Mosesson M.W. Finlayson J.S. Umfleet RA. Human fibrinogen heterogeneities. III. Identification of γ chain variants.J Biol Chem. 1972; 247: 5223-7Abstract Full Text PDF PubMed Google Scholar, 10Mosesson M.W. Finlayson JS. Subfractions of human fibrinogen: preparation and analysis.J Lab Clin Med. 1963; 62: 663-74PubMed Google Scholar, 11Wolfenstein-Todel C. Mosesson MW. Human plasma fibrinogen heterogeneity evidence for an extended carboxyl-terminal sequence in a normal gamma chain variant (γ′).Proc Natl Acad Sci USA. 1980; 77: 5069-73Crossref PubMed Google Scholar]. Homodimeric γ′/γ′ molecules exist in small amounts but account for considerably less than 1% of the circulating fibrinogen molecules in blood [11Wolfenstein-Todel C. Mosesson MW. Human plasma fibrinogen heterogeneity evidence for an extended carboxyl-terminal sequence in a normal gamma chain variant (γ′).Proc Natl Acad Sci USA. 1980; 77: 5069-73Crossref PubMed Google Scholar]. The N-terminal region of each Aα chain contains a fibrinopeptide A (FPA) sequence, cleavage of which by thrombin initiates the fibrin assembly process [12Scheraga H.A. Laskowski Jr, M. The fibrinogen-fibrin conversion.Adv Prot Chem. 1957; 12: 1-131Crossref Scopus (0) Google Scholar, 13Blombäck B. Studies on the action of thrombotic enzymes on bovine fibrinogen as measured by N-terminal analysis.Arkiv Kemi. 1958; 12: 321-35Google Scholar, 14Blombäck B. Hessel B. Hogg D. Therkildsen L. A two-step fibrinogen-fibrin transition in blood coagulation.Nature. 1978; 275: 501-5Crossref PubMed Google Scholar] by exposing a polymerization site, EA. One portion of EA is at the N-terminus of the fibrin α chain comprising residues 17–20 (GPRV) [15Laudano A.P. Doolittle RF. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization.Proc Natl Acad Sci USA. 1978; 75: 3085-9Crossref PubMed Google Scholar], and another portion is located in the fibrin β chain between residues 15 and 42 [16Liu C.Y. Koehn J.A. Morgan FJ. Characterization of fibrinogen New York 1.J Biol Chem. 1985; 260: 4390-6Abstract Full Text PDF PubMed Google Scholar, 17Pandya B.V. Cierniewski C.S. Budzynski AZ. Conservation of human fibrinogen conformation after cleavage of the Bβ chain NH2-terminus.J Biol Chem. 1985; 260: 2994-3000Abstract Full Text PDF PubMed Google Scholar, 18Siebenlist K.R. DiOrio J.P. Budzynski A.Z. Mosesson MW. The polymerization and thrombin-binding properties of des-(B beta 1–42)-fibrin.J Biol Chem. 1990; 265: 18650-5Abstract Full Text PDF PubMed Google Scholar, 19Shimizu A. Nagel G.M. Doolittle RF. Photoaffinity labeling of the primary fibrin polymerization site: Isolation of a CNBr fragment corresponding to γ 337–379.Proc Natl Acad Sci USA. 1992; 89: 2888-92Crossref PubMed Google Scholar]. Each EA site combines with a constitutive complementary binding pocket (Da) in the D domain of neighboring molecules that is located between γ337 and γ379 [19Shimizu A. Nagel G.M. Doolittle RF. Photoaffinity labeling of the primary fibrin polymerization site: Isolation of a CNBr fragment corresponding to γ 337–379.Proc Natl Acad Sci USA. 1992; 89: 2888-92Crossref PubMed Google Scholar, 20Pratt K.P. Côté H.C.F. Chung D.W. Stenkamp R.E. Davie EW. The primary fibrin polymerization pocket, three-dimensional structure of a 30-kDa C-terminal γ chain fragment complexed with the peptide gly-pro-arg-pro.Proc Natl Acad Sci USA. 1997; 94: 7176-81Crossref PubMed Scopus (0) Google Scholar, 21Everse S.J. Spraggon G. Veerapandian L. Riley M. Doolittle RF. Crystal structure of fragment double-D from human fibrin with two different bound ligands.Biochemistry. 1998; 37: 8637-42Crossref PubMed Scopus (152) Google Scholar]. These initial EA:Da associations cause fibrin molecules to align in a staggered overlapping end-to-middle domain arrangement forming double-stranded twisting fibrils (Fig. 2) [22Ferry JD. The mechanism of polymerization of fibrinogen.Proc Natl Acad Sci USA. 1952; 38: 566-9Crossref PubMed Google Scholar, 23Krakow W. Endres G.F. Siegel B.M. Scheraga HA. An electron microscopic investigation of the polymerization of bovine fibrin monomer.J Mol Biol. 1972; 71: 95-103Crossref PubMed Scopus (0) Google Scholar, 24Fowler W.E. Hantgan R.R. Hermans J. McDonagh J. Structure of the fibrin protofibril.Proc Natl Acad Sci USA. 1981; 78: 4872-6Crossref PubMed Google Scholar, 25Müller M.F. Ris H.A. Ferry JD. Electron Microscopy of fine fibrin clots and fine and coarse fibrin films.J Mol Biol. 1984; 174: 369-84Crossref PubMed Scopus (0) Google Scholar]. Fibrils also undergo lateral associations to form wider fibrils and fibers that comprise the three-dimensional fiber network [26Mosesson M.W. Siebenlist K.R. Amrani D.L. DiOrio JP. Identification of covalently linked trimeric and tetrameric D domains in crosslinked fibrin.Proc Natl Acad Sci USA. 1989; 86: 1113-7Crossref PubMed Google Scholar, 27Hewat E.A. Tranqui L. Wade RH. Electron microscope structural study of modified fibrin and a related modified fibrinogen aggregate.J Mol Biol. 1983; 170: 203-22Crossref PubMed Scopus (0) Google Scholar]. Two types of branch junctions occur in fibrin network structures [28Mosesson M.W. DiOrio J.P. Siebenlist K.R. Wall J.S. Hainfeld JF. Evidence for a second type of fibril branch point in fibrin polymer networks, the trimolecular junction.Blood. 1993; 82: 1517-21Crossref PubMed Google Scholar]. The first type occurs when a double-stranded fibril converges laterally with another fibril to form a four-stranded fibril, a so-called ‘bilateral’ junction. Lateral convergence of larger fibrils or fibers evidently result in larger versions of this type of branch junction. The second type of branch junction, termed ‘equilateral’, forms by the coalescence of three fibrin molecules that connect three fibrils of equal widths (Fig. 2). Equilateral junctions form with greater frequency when fibrinopeptide cleavage is relatively slow [29Mosesson M.W. DiOrio J.P. Muller M.F. Shainoff J.R. Siebenlist K.R. Amrani D.L. Homandberg G.A. Soria J. Soria C. Samama M. Studies on the ultrastructure of fibrin lacking fibrinopeptide B (β-fibrin).Blood. 1987; 69: 1073-81Crossref PubMed Google Scholar]. Under such conditions the networks are more branched and the matrix ‘tighter’ (i.e. less porous) than those formed at high levels of thrombin [30Blombäck B. Carlsson K. Fatah K. Hessel B. Procyk R. Fibrin in human plasma: gel architectures governed by rate and nature of fibrinogen activation.Thromb Res. 1994; 75: 521-38Abstract Full Text PDF PubMed Scopus (220) Google Scholar]. There are two constitutive self-association sites in the γ chain region of each D domain (the ‘γ module’) that participate in the fibrin or fibrinogen assembly and cross-linking process, namely ‘γXL’ and ‘D:D’[31Mosesson M.W. Siebenlist K.R. Hainfeld J.F. Wall JS. The covalent structure of factor XIIIa crosslinked fibrinogen fibrils.J Struct Biol. 1995; 115: 88-101Crossref PubMed Scopus (70) Google Scholar, 32Mosesson M.W. Siebenlist K.R. DiOrio J.P. Matsuda M. Hainfeld J.F. Wall JS. The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (γ275 Arg→Cys).J Clin Invest. 1995; 96: 1053-8Crossref PubMed Google Scholar]. The γXL site overlaps the γ chain cross-linking site (Fig. 1). Intermolecular association between two γXL sites promotes the alignment of cross-linking regions for subsequent factor XIII- or XIIIa-mediated transglutamination [31Mosesson M.W. Siebenlist K.R. Hainfeld J.F. Wall JS. The covalent structure of factor XIIIa crosslinked fibrinogen fibrils.J Struct Biol. 1995; 115: 88-101Crossref PubMed Scopus (70) Google Scholar, 33Siebenlist K.R. Meh D. Mosesson MW. Protransglutaminase (factor XIII) mediated crosslinking of fibrinogen and fibrin.Thromb Haemost. 2001; 86: 1221-8Crossref PubMed Scopus (0) Google Scholar, 34Mosesson M.W. Siebenlist K.R. Hernandez I. Wall J.S. Hainfeld JF. Fibrinogen assembly and crosslinking on a fibrin fragment E template.Thromb Haemost. 2002; 87: 651-8Crossref PubMed Scopus (17) Google Scholar]. The ‘D:D’ site is situated at the outer portion of each fibrin(ogen) D domain between residues 275 and 300 of the γ module [35Spraggon G. Everse S.J. Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin.Nature. 1997; 389: 455-62Crossref PubMed Scopus (392) Google Scholar]. These sites are necessary for proper end-to-end alignment of fibrinogen or fibrin molecules in assembling polymer structures, as exemplified by a ‘D:D’ defective dysfibrinogen, Tokyo II (γR275C) [32Mosesson M.W. Siebenlist K.R. DiOrio J.P. Matsuda M. Hainfeld J.F. Wall JS. The role of fibrinogen D domain intermolecular association sites in the polymerization of fibrin and fibrinogen Tokyo II (γ275 Arg→Cys).J Clin Invest. 1995; 96: 1053-8Crossref PubMed Google Scholar], which showed impaired end-to-end alignment of cross-linked fibrinogen molecules. Tokyo II fibrin networks were characterized by an increased level of fiber branching, evidently resulting from slowed fibrin assembly plus inaccurate end-to-end positioning of assembling fibrin monomers. Despite these misalignments, γ chain cross-linking at the γXL site proceeded at a normal rate. Release of fibrinopeptide B (FPB, Bβ1–14) occurs more slowly than the release of FPA [12Scheraga H.A. Laskowski Jr, M. The fibrinogen-fibrin conversion.Adv Prot Chem. 1957; 12: 1-131Crossref Scopus (0) Google Scholar, 13Blombäck B. Studies on the action of thrombotic enzymes on bovine fibrinogen as measured by N-terminal analysis.Arkiv Kemi. 1958; 12: 321-35Google Scholar, 14Blombäck B. Hessel B. Hogg D. Therkildsen L. A two-step fibrinogen-fibrin transition in blood coagulation.Nature. 1978; 275: 501-5Crossref PubMed Google Scholar] and exposes an independent polymerization site, EB[36Shainoff J.R. Dardik BN. Fibrinopeptide B in fibrin assembly and metabolism: physiologic significance in delayed release of the peptide.Ann NY Acad Sci. 1983; 408: 254-67Crossref PubMed Google Scholar], beginning with β15–18 (GHRP) [15Laudano A.P. Doolittle RF. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization.Proc Natl Acad Sci USA. 1978; 75: 3085-9Crossref PubMed Google Scholar], that interacts with a constitutive complementary Db site in the β chain segment of the D domain [21Everse S.J. Spraggon G. Veerapandian L. Riley M. Doolittle RF. Crystal structure of fragment double-D from human fibrin with two different bound ligands.Biochemistry. 1998; 37: 8637-42Crossref PubMed Scopus (152) Google Scholar, 37Medved L.V. Litvinovich S.V. Ugarova T.P. Lukinova N.I. Kilikhevich V.N. Ardemasova ZA. Localization of a fibrin polymerization site complimentary to Gly-His-Arg sequence.FEBS Lett. 1993; 320: 239-42Crossref PubMed Google Scholar]. The EB:Db interaction, though not required for lateral strand or fibril associations to occur, nevertheless contributes to this process by inducing rearrangements in the βC region of the D domain that permit βC:βC contacts to occur [38Yang Z. Mochalkin I. Doolittle RF. A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides.Proc Natl Acad Sci USA. 2000; 97: 14156-61Crossref PubMed Scopus (180) Google Scholar]. This process is illustrated in Fig. 1. Polymerization of des BB-fibrin results in the same type of fibril structure as occurs with des AA-fibrin [29Mosesson M.W. DiOrio J.P. Muller M.F. Shainoff J.R. Siebenlist K.R. Amrani D.L. Homandberg G.A. Soria J. Soria C. Samama M. Studies on the ultrastructure of fibrin lacking fibrinopeptide B (β-fibrin).Blood. 1987; 69: 1073-81Crossref PubMed Google Scholar], but the clot strength is much lower than that of des AA-fibrin [36Shainoff J.R. Dardik BN. Fibrinopeptide B in fibrin assembly and metabolism: physiologic significance in delayed release of the peptide.Ann NY Acad Sci. 1983; 408: 254-67Crossref PubMed Google Scholar]. The ‘αC’ domain originates in the D domain at residue 220 not far from where it emerges from the D domain and terminates at its C-terminus, Aα610 [39Weisel J.W. Medved LV. The structure and function of the αC domains of fibrinogen.Ann NY Acad Sci. 2001; 936: 312-27Crossref PubMed Google Scholar]. Fibrin clots formed from circulating fibrinogen molecules such as fibrinogen ‘catabolite’ fractions I-6 to I-9, which lack C-terminal portions of the αC domain, display a prolonged thrombin time, reduced turbidity, and produce thinner fibers [40Mosesson M.W. Sherry S. The preparation and properties of human fibrinogen of relatively high solubility.Biochemistry. 1966; 5: 2829-35Crossref PubMed Google Scholar, 41Mosesson MW. Fibrinogen heterogeneity.Ann NY Acad Sci. 1983; 408: 97-113Crossref PubMed Google Scholar, 42Hasegawa N. Sasaki S. Location of the binding site ‘b’ for lateral polymerization of fibrin.Thromb Res. 1990; 57: 183-95Abstract Full Text PDF PubMed Scopus (0) Google Scholar]. In fibrinogen, the αC domains tend to be non-covalently tethered to the E domain [43Mosesson M.W. Hainfeld J.F. Haschemeyer R.H. Wall JS. Identification and mass analysis of human fibrinogen molecules and their domains by scanning transmission electron microscopy.J Mol Biol. 1981; 153: 695-718Crossref PubMed Scopus (0) Google Scholar, 44Veklich Y.I. Gorkun O.V. Medved L.V. Niewenhuizen W. Weisel JW. Carboxyl-terminal portions of the α chains of fibrinogen and fibrin.J Biol Chem. 1993; 268: 13577-85Abstract Full Text PDF PubMed Google Scholar, 45Gorkun O.V. Veklich Y.I. Medved L.V. Henschen A. Weisel JW. Role of the αC domains of fibrin in clot formation.Biochemistry. 1994; 33: 6986-97Crossref PubMed Scopus (170) Google Scholar], but dissociate from it following FPB cleavage [44Veklich Y.I. Gorkun O.V. Medved L.V. Niewenhuizen W. Weisel JW. Carboxyl-terminal portions of the α chains of fibrinogen and fibrin.J Biol Chem. 1993; 268: 13577-85Abstract Full Text PDF PubMed Google Scholar, 45Gorkun O.V. Veklich Y.I. Medved L.V. Henschen A. Weisel JW. Role of the αC domains of fibrin in clot formation.Biochemistry. 1994; 33: 6986-97Crossref PubMed Scopus (170) Google Scholar]. This event evidently makes αC domains available for interaction with other αC domains, thereby promoting lateral fibril associations and further network assembly (c.f. Fig. 2). The C-terminal region of each fibrinogen or fibrin γ chain contains a single cross-linking site at which factor XIII or XIIIa catalyzes the formation of γ dimers [31Mosesson M.W. Siebenlist K.R. Hainfeld J.F. Wall JS. The covalent structure of factor XIIIa crosslinked fibrinogen fibrils.J Struct Biol. 1995; 115: 88-101Crossref PubMed Scopus (70) Google Scholar, 33Siebenlist K.R. Meh D. Mosesson MW. Protransglutaminase (factor XIII) mediated crosslinking of fibrinogen and fibrin.Thromb Haemost. 2001; 86: 1221-8Crossref PubMed Scopus (0) Google Scholar, 46McKee P.A. Mattock P. Hill RL. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin.Proc Natl Acad Sci USA. 1970; 66: 738-44Crossref PubMed Google Scholar, 47Kanaide H. Shainoff JR. Cross-linking of fibrinogen and fibrin by fibrin-stabilizing factor (factor XIIIa).J Lab Clin Med. 1975; 85: 574-97PubMed Google Scholar] by incorporating reciprocal intermolecular ε-(γ-glutamyl)lysine bridges between the lysine at γ406 of one γ chain and a glutamine at γ398/399 of another (c.f. Fig. 1) [48Doolittle R.F. Chen R. Lau F. Hybrid fibrin: proof of the intermolecular nature of γ-γ crosslinking units.Biochem Biophys Res Commun. 1971; 44: 94-100Crossref PubMed Scopus (0) Google Scholar, 49Chen R. Doolittle RF. γ-γ cross-linking sites in human and bovine fibrin.Biochemistry. 1971; 10: 4486-91Crossref Google Scholar, 50Purves L.R. Purves M. Brandt W. Cleavage of fibrin-derived d-dimer into monomers by endopeptidase from puff ader venom (bitis arietans) acting at cross-linked sites of the γ chain. Sequence of carboxy-terminal cyanogen bromide γ-chain fragments.Biochemistry. 1987; 26: 4640-6Crossref PubMed Scopus (0) Google Scholar]. The same type of intermolecular ε-(γ-glutamyl)lysine bridging occurs more slowly among several different amine donor and lysine acceptor sites in Aα or α chains [51Sobel J.H. Gawinowicz MA. Identification of the α chain lysine donor sites involved in factor XIIIa fibrin cross-linking.J Biol Chem. 1996; 271: 19288-97Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 52Matsuka Y.V. Medved L.V. Migliorini M.M. Ingham KC. Factor XIIIa-catalyzed cross-linking of recombinant αC fragments of human fibrinogen.Biochemistry. 1996; 35: 5810-6Crossref PubMed Scopus (0) Google Scholar], thereby creating oligomers and larger polymers [33Siebenlist K.R. Meh D. Mosesson MW. Protransglutaminase (factor XIII) mediated crosslinking of fibrinogen and fibrin.Thromb Haemost. 2001; 86: 1221-8Crossref PubMed Scopus (0) Google Scholar, 46McKee P.A. Mattock P. Hill RL. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin.Proc Natl Acad Sci USA. 1970; 66: 738-44Crossref PubMed Google Scholar, 53Folk J.E. Finlayson JS. The ε-(γ-glutamyl) lysine crosslink and the catalytic role of transglutaminases.Adv Prot Chem. 1977; 31: 1-133Crossref PubMed Google Scholar]. Cross-linking also occurs among α and γ chains [26Mosesson M.W. Siebenlist K.R. Amrani D.L. DiOrio JP. Identification of covalently linked trimeric and tetrameric D domains in crosslinked fibrin.Proc Natl Acad Sci USA. 1989; 86: 1113-7Crossref PubMed Google Scholar, 54Shainoff J.R. Urbanic D.A. DiBello PM. Immunoelectrophoretic characterizations of the cross-linking of fibrinogen and fibrin by factor XIIIa and tissue transglutaminase.J Biol Chem. 1991; 266: 6429-37Abstract Full Text PDF PubMed Google Scholar], and small amounts of internally cross-linked α-γ chain heterodimers have been identified in plasma fibrinogen molecules [55Siebenlist K.R. Mosesson MW. Evidence for intramolecular cross-linked Aαγ chain heterodimers in plasma fibrinogen.Biochemistry. 1996; 35: 5817-21Crossref PubMed Scopus (0) Google Scholar]. In addition to the rapidly forming γ dimers, higher order forms of cross-linked γ chains, namely γ trimers and γ tetramers, evolve more slowly [26Mosesson M.W. Siebenlist K.R. Amrani D.L. DiOrio JP. Identification of covalently linked trimeric and tetrameric D domains in crosslinked fibrin.Proc Natl Acad Sci USA. 1989; 86: 1113-7Crossref PubMed Google Scholar, 33Siebenlist K.R. Meh D. Mosesson MW. Protransglutaminase (factor XIII) mediated crosslinking of fibrinogen and fibrin.Thromb Haemost. 2001; 86: 1221-8Crossref PubMed Scopus (0) Google Scholar, 54Shainoff J.R. Urbanic D.A. DiBello PM. Immunoelectrophoretic characterizations of the cross-linking of fibrinogen and fibrin by factor XIIIa and tissue transglutaminase.J Biol Chem. 1991; 266: 6429-37Abstract Full Text PDF PubMed Google Scholar, 56Siebenlist K.R. Mosesson MW. Factors affecting γ-chain multimer formation in cross-linked fibrin.Biochemistry. 1992; 31: 936-41Crossref PubMed Google Scholar]. Because there is only a single lysine donor site at γ406 [49Chen R. Doolittle RF. γ-γ cross-linking sites in human and bovine fibrin.Biochemistry. 1971; 10: 4486-91Crossref Google Scholar, 50Purves L.R. Purves M. Brandt W. Cleavage of fibrin-derived d-dimer into monomers by endopeptidase from puff ader venom (bitis arietans) acting at cross-linked sites of the γ chain. Sequence of carboxy-terminal cyanogen bromide γ-chain fragments.Biochemistry. 1987; 26: 4640-6Crossref PubMed Scopus (0) Google Scholar, 51Sobel J.H. Gawinowicz MA. Identification of the α chain lysine donor sites involved in factor XIIIa fibrin cross-linking.J Biol Chem. 1996; 271: 19288-97Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 57Samokhin G.P. Lorand L. Contact with the N termini in the central E domain enhances the reactivities of the distal D domains of fibrin to factor XIIIa.J Biol Chem. 1995; 270: 21827-32Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar] we assume that trimeric and tetrameric structures form through utilization or reutilization of that same residue. In any case, the production of such multimeric structures in fibrin increases the resistance to lysis by plasmin, but it is a very slow process [58Siebenlist K.R. Mosesson MW. Progressive cross-linking of fibrin γ chains increases resistance to fibrinolysis.J Biol Chem. 1994; 269: 28414-9Abstract Full Text PDF PubMed Google Scholar]. The Da:EA interaction, which drives fibrin assembly, facilitates the antiparallel intermolecular alignment of γ chain pairs at γXL sites, thereby accelerating the rate of XIIIa-mediated cross-linking [31Mosesson M.W. Siebenlist K.R. Hainfeld J.F. Wall JS. The covalent structure of factor XIIIa crosslinked fibrinogen fibrils.J Struct Biol. 1995; 115: 88-101Crossref PubMed Scopus (70) Google Scholar, 34Mosesson M.W. Siebenlist K.R. Hernandez I. Wall J.S. Hainfeld JF. Fibrinogen assembly and crosslinking on a fibrin fragment E template.Thromb Haemost. 2002; 87: 651-8Crossref PubMed Scopus (17) Google Scholar, 47Kanaide H. Shainoff JR. Cross-linking of fibrinogen and fibrin by fibrin-stabilizing factor (factor XIIIa).J Lab Clin Med. 1975; 85: 574-97PubMed Google Scholar, 57Samokhin G.P. Lorand L. Contact with the N termini in the central E domain enhances the reactivities of the distal D domains of fibrin to factor XIIIa.J Biol Chem. 1995; 270: 21827-32Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar]. Available evidence indicates that interacting γ chains become positioned ‘transversely’ between the D domains of opposing strands of a cross-linked fibrin or fibrinogen fibril, as represented in Figure 1, Figure 2. This subject has been extensively reviewed [59Mosesson M.W. Siebenlist K.R. Meh DA. The structure and biological features of fibrinogen and fibrin.Ann NY Acad Sci. 2001; 936: 11-30Crossref PubMed Google Scholar], and those interested in considering the details of this controversial topic and the so-called ‘pull out’ hypothesis [60Yakovlev S. Litvinovich S. Loukinov D. Medved L. The role of the beta-strand insert in the central domain of the fibrinogen gamma-module.Biochemistry. 2000; 39: 15721-9Crossref PubMed Scopus (0) Google Scholar] in the γ module, by which transverse γ chain positioning might take place, are referred to these last two articles. A more recent article on assembly and cross-linking of fibrinogen molecules on a fibrin fragment E template also deals with this subject [34Mosesson M.W. Siebenlist K.R. Hernandez I. Wall J.S. Hainfeld JF. Fibrinogen assembly and crosslinking on a fibrin fragment E template.Thromb Haemost. 2002; 87: 651-8Crossref PubMed Scopus (17) Google Scholar]. Plasma factor XIII (plasma protransglutaminase) circulates as an A2B2 tetramer that is bound by its B subunits to fibrinogen γ′ chains [61Siebenlist K.R. Meh D.A. Mosesson MW. Plasma factor XIII binds specifically to fibrinogen molecules containing γ′ chains.Biochemistry. 1996; 35: 10448-53Crossref PubMed Scopus (135) Google Scholar]. Fibrinogen 2 thus serves as a carrier for factor XIII in blood, but there is more to this story. Plasma factor XIII, even in a plasma environment, or cellular factor XIII (A2), possesses constitutive enzymatic activity against fibrinogen in the presence of physiological calcium levels, and the rates of cross-linking can approach those mediated by thrombin-activated factor XIIIa [33Siebenlist K.R. Meh D. Mosesson MW. Protransglutaminase (factor XIII) mediated crosslinking of fibrinogen and fibrin.Thromb Haemost. 2001; 86: 1221-8Crossref PubMed Scopus (0) Google Scholar]. Fibrin was cross-linked eight times more rapidly than fibrinogen, and the cross-linking rates were nearly the same as observed with XIIIa. In contrast to this high level of activity, factor XIII was virtually inactive in a cadaverine-casein system, thus indicating specificity for native substrates like fibrinogen or α2-antiplasmin, the latter of which is found covalently cross-linked to plasma fibrinogen [62Siebenlist K.R. Mosesson M.W. Meh D.A. DiOrio J.P. Albrecht R.M. Olson JD. Coexisting dysfibrinogenemia (γR275C) and factor V Leiden deficiency associated with thromboembolic disease (fibrinogen Cedar Rapids).Blood Coag Fibrinolys. 2000; 11: 293-304PubMed Google Scholar]. Heterodimeric γ′ chain-containing fibrinogen 2 preparations (γA/γ′) were cross-linked 3.5 times more slowly than homodimeric fibrinogen 1 molecules (γA/γA), suggesting that factor XIII bound to fibrinogen 2 plays an important role in down-regulating potential plasma XIII-mediated cross-linking activity, and possibly accounting in part for the low levels of cross-linked fibrinogen molecules that are normally found in plasma in the face of such considerable cross-linking potential. The observations ind" @default.
- W1570621415 created "2016-06-24" @default.
- W1570621415 creator A5064112610 @default.
- W1570621415 date "2003-02-01" @default.
- W1570621415 modified "2023-10-12" @default.
- W1570621415 title "Fibrinogen γ chain functions" @default.
- W1570621415 cites W126825949 @default.
- W1570621415 cites W1483922672 @default.
- W1570621415 cites W1488989676 @default.
- W1570621415 cites W1494296538 @default.
- W1570621415 cites W1499054077 @default.
- W1570621415 cites W1505283703 @default.
- W1570621415 cites W1520458024 @default.
- W1570621415 cites W1536945368 @default.
- W1570621415 cites W1552506639 @default.
- W1570621415 cites W1556587647 @default.
- W1570621415 cites W1580322940 @default.
- W1570621415 cites W1586686759 @default.
- W1570621415 cites W1609872692 @default.
- W1570621415 cites W1649140242 @default.
- W1570621415 cites W1853030675 @default.
- W1570621415 cites W1856146912 @default.
- W1570621415 cites W1867300921 @default.
- W1570621415 cites W1907444416 @default.
- W1570621415 cites W1961340888 @default.
- W1570621415 cites W1965500868 @default.
- W1570621415 cites W1968056160 @default.
- W1570621415 cites W1969632860 @default.
- W1570621415 cites W1970314984 @default.
- W1570621415 cites W1971299102 @default.
- W1570621415 cites W1972282939 @default.
- W1570621415 cites W1974656135 @default.
- W1570621415 cites W1979615223 @default.
- W1570621415 cites W1980063169 @default.
- W1570621415 cites W1980364322 @default.
- W1570621415 cites W1981438065 @default.
- W1570621415 cites W1983821197 @default.
- W1570621415 cites W1984050935 @default.
- W1570621415 cites W1987969307 @default.
- W1570621415 cites W1988873606 @default.
- W1570621415 cites W1989144240 @default.
- W1570621415 cites W199040808 @default.
- W1570621415 cites W1990922681 @default.
- W1570621415 cites W1995054061 @default.
- W1570621415 cites W1996930129 @default.
- W1570621415 cites W1998939630 @default.
- W1570621415 cites W2003843472 @default.
- W1570621415 cites W2012569445 @default.
- W1570621415 cites W2013893652 @default.
- W1570621415 cites W2014816029 @default.
- W1570621415 cites W2015577105 @default.
- W1570621415 cites W2017990024 @default.
- W1570621415 cites W2019014231 @default.
- W1570621415 cites W2019667037 @default.
- W1570621415 cites W2020450503 @default.
- W1570621415 cites W2021526142 @default.
- W1570621415 cites W2022315251 @default.
- W1570621415 cites W2022372977 @default.
- W1570621415 cites W2022405658 @default.
- W1570621415 cites W2022760394 @default.
- W1570621415 cites W2025358191 @default.
- W1570621415 cites W2026724199 @default.
- W1570621415 cites W2026974631 @default.
- W1570621415 cites W2027141031 @default.
- W1570621415 cites W2028047806 @default.
- W1570621415 cites W2029786429 @default.
- W1570621415 cites W2030377408 @default.
- W1570621415 cites W2030935317 @default.
- W1570621415 cites W2034811729 @default.
- W1570621415 cites W2037160988 @default.
- W1570621415 cites W2037383079 @default.
- W1570621415 cites W2037483881 @default.
- W1570621415 cites W2038850324 @default.
- W1570621415 cites W2044806537 @default.
- W1570621415 cites W2046090148 @default.
- W1570621415 cites W2053164755 @default.
- W1570621415 cites W2053659427 @default.
- W1570621415 cites W2056593430 @default.
- W1570621415 cites W2060135725 @default.
- W1570621415 cites W2060363641 @default.
- W1570621415 cites W2063683800 @default.
- W1570621415 cites W2066217822 @default.
- W1570621415 cites W2067358970 @default.
- W1570621415 cites W2068476525 @default.
- W1570621415 cites W2068689829 @default.
- W1570621415 cites W2069578485 @default.
- W1570621415 cites W2071144173 @default.
- W1570621415 cites W2072966615 @default.
- W1570621415 cites W2077381883 @default.
- W1570621415 cites W2081197478 @default.
- W1570621415 cites W2085311523 @default.
- W1570621415 cites W2086056309 @default.
- W1570621415 cites W2086763511 @default.
- W1570621415 cites W2090139847 @default.
- W1570621415 cites W2091809838 @default.
- W1570621415 cites W2092608701 @default.
- W1570621415 cites W2093477038 @default.
- W1570621415 cites W2094517457 @default.