Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570643443> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W1570643443 endingPage "112" @default.
- W1570643443 startingPage "91" @default.
- W1570643443 abstract "Throughout the lecture a Riemann surface is meant to be a compact Riemann surface of genus g ≥ 2 and a symmetry of such surface, an antiholomorphic involution. The reader who has attended the lecture must be convinced of the importance of studies of symmetries of Riemann surfaces and the role that the groups of their automorphisms play there. Up to certain extent that lecture illustrates how to use results concerning this subject and in this one we shall mainly show how to get them. A symmetric Riemann surface X corresponds to a complex curve CX which can be defined over the reals and symmetries nonconjugated in the group Aut±(X) of all automorphisms of X correspond to nonequivalent real forms of CX. The aim of this lecture is a brief introduction to the combinatorial aspects of this theory together with samples of results and proofs. The most natural questions that arise here are the following:" @default.
- W1570643443 created "2016-06-24" @default.
- W1570643443 creator A5061828674 @default.
- W1570643443 date "2001-06-14" @default.
- W1570643443 modified "2023-10-13" @default.
- W1570643443 title "Symmetries of Riemann surfaces from a combinatorial point of view" @default.
- W1570643443 doi "https://doi.org/10.1017/cbo9780511569272.007" @default.
- W1570643443 hasPublicationYear "2001" @default.
- W1570643443 type Work @default.
- W1570643443 sameAs 1570643443 @default.
- W1570643443 citedByCount "7" @default.
- W1570643443 countsByYear W15706434432017 @default.
- W1570643443 crossrefType "book-chapter" @default.
- W1570643443 hasAuthorship W1570643443A5061828674 @default.
- W1570643443 hasConcept C108710211 @default.
- W1570643443 hasConcept C112468886 @default.
- W1570643443 hasConcept C118712358 @default.
- W1570643443 hasConcept C131356121 @default.
- W1570643443 hasConcept C136119220 @default.
- W1570643443 hasConcept C18556879 @default.
- W1570643443 hasConcept C199479865 @default.
- W1570643443 hasConcept C202444582 @default.
- W1570643443 hasConcept C2524010 @default.
- W1570643443 hasConcept C26020477 @default.
- W1570643443 hasConcept C2776799497 @default.
- W1570643443 hasConcept C33923547 @default.
- W1570643443 hasConcept C96469262 @default.
- W1570643443 hasConceptScore W1570643443C108710211 @default.
- W1570643443 hasConceptScore W1570643443C112468886 @default.
- W1570643443 hasConceptScore W1570643443C118712358 @default.
- W1570643443 hasConceptScore W1570643443C131356121 @default.
- W1570643443 hasConceptScore W1570643443C136119220 @default.
- W1570643443 hasConceptScore W1570643443C18556879 @default.
- W1570643443 hasConceptScore W1570643443C199479865 @default.
- W1570643443 hasConceptScore W1570643443C202444582 @default.
- W1570643443 hasConceptScore W1570643443C2524010 @default.
- W1570643443 hasConceptScore W1570643443C26020477 @default.
- W1570643443 hasConceptScore W1570643443C2776799497 @default.
- W1570643443 hasConceptScore W1570643443C33923547 @default.
- W1570643443 hasConceptScore W1570643443C96469262 @default.
- W1570643443 hasLocation W15706434431 @default.
- W1570643443 hasOpenAccess W1570643443 @default.
- W1570643443 hasPrimaryLocation W15706434431 @default.
- W1570643443 hasRelatedWork W1974228976 @default.
- W1570643443 hasRelatedWork W2065565279 @default.
- W1570643443 hasRelatedWork W2341916174 @default.
- W1570643443 hasRelatedWork W2523393916 @default.
- W1570643443 hasRelatedWork W2962853896 @default.
- W1570643443 hasRelatedWork W41994924 @default.
- W1570643443 hasRelatedWork W4237399870 @default.
- W1570643443 hasRelatedWork W4247814099 @default.
- W1570643443 hasRelatedWork W67350891 @default.
- W1570643443 hasRelatedWork W2122803040 @default.
- W1570643443 isParatext "false" @default.
- W1570643443 isRetracted "false" @default.
- W1570643443 magId "1570643443" @default.
- W1570643443 workType "book-chapter" @default.