Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570691602> ?p ?o ?g. }
- W1570691602 endingPage "17" @default.
- W1570691602 startingPage "1" @default.
- W1570691602 abstract "Using the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds, temperatures, and anvil cloud ice, we use our domain-filling, forward trajectory model combined with a new cloud module to show that convective transport of saturated air and ice to altitudes below the tropopause has a significant impact on stratospheric water vapor and upper tropospheric clouds. We find that including cloud microphysical processes (rather than assuming that parcel water vapor never exceeds saturation) increases the lower stratospheric average H2O by 10–20%. Our model-computed cloud fraction shows reasonably good agreement with tropical upper troposphere (TUT) cloud frequency observed by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument in boreal winter with poorer agreement in summer. Our results suggest that over 40% of TUT cirrus is due to convection, and it is the saturated air from convection rather than injected cloud ice that primarily contributes to this increase. Convection can add up to 13% more water to the stratosphere. With just convective hydration (convection adds vapor up to saturation), the global lower stratospheric modeled water vapor is close to Microwave Limb Sounder observations. Adding convectively injected ice increases the modeled water vapor to ~8% over observations. Improving the representation of MERRA tropopause temperatures fields reduces stratospheric water vapor by ~4%." @default.
- W1570691602 created "2016-06-24" @default.
- W1570691602 creator A5002682560 @default.
- W1570691602 creator A5023168843 @default.
- W1570691602 creator A5035865871 @default.
- W1570691602 creator A5061700146 @default.
- W1570691602 creator A5065613655 @default.
- W1570691602 date "2014-12-01" @default.
- W1570691602 modified "2023-09-30" @default.
- W1570691602 title "Cloud formation, convection, and stratospheric dehydration" @default.
- W1570691602 cites W1483445352 @default.
- W1570691602 cites W1492288011 @default.
- W1570691602 cites W1533774271 @default.
- W1570691602 cites W1566173015 @default.
- W1570691602 cites W1587101236 @default.
- W1570691602 cites W1960638219 @default.
- W1570691602 cites W1968812917 @default.
- W1570691602 cites W1976884721 @default.
- W1570691602 cites W1979895664 @default.
- W1570691602 cites W1984219743 @default.
- W1570691602 cites W1987640666 @default.
- W1570691602 cites W1994846930 @default.
- W1570691602 cites W1996376768 @default.
- W1570691602 cites W1998109790 @default.
- W1570691602 cites W2000796183 @default.
- W1570691602 cites W2003194637 @default.
- W1570691602 cites W2007074726 @default.
- W1570691602 cites W2007387819 @default.
- W1570691602 cites W2012908759 @default.
- W1570691602 cites W2013100677 @default.
- W1570691602 cites W2013356854 @default.
- W1570691602 cites W2017933784 @default.
- W1570691602 cites W2021370825 @default.
- W1570691602 cites W2021538577 @default.
- W1570691602 cites W2021734559 @default.
- W1570691602 cites W2025934874 @default.
- W1570691602 cites W2029321418 @default.
- W1570691602 cites W2035570184 @default.
- W1570691602 cites W2042528941 @default.
- W1570691602 cites W2043546816 @default.
- W1570691602 cites W2043742340 @default.
- W1570691602 cites W2044554079 @default.
- W1570691602 cites W2045424135 @default.
- W1570691602 cites W2051416171 @default.
- W1570691602 cites W2055077811 @default.
- W1570691602 cites W2059131923 @default.
- W1570691602 cites W2061877440 @default.
- W1570691602 cites W2072648020 @default.
- W1570691602 cites W2075954098 @default.
- W1570691602 cites W2080474542 @default.
- W1570691602 cites W2085163035 @default.
- W1570691602 cites W2089178461 @default.
- W1570691602 cites W2093215882 @default.
- W1570691602 cites W2093684690 @default.
- W1570691602 cites W2095425287 @default.
- W1570691602 cites W2096548910 @default.
- W1570691602 cites W2103727751 @default.
- W1570691602 cites W2109711099 @default.
- W1570691602 cites W2116574409 @default.
- W1570691602 cites W2134626556 @default.
- W1570691602 cites W2137772245 @default.
- W1570691602 cites W2145877104 @default.
- W1570691602 cites W2148189666 @default.
- W1570691602 cites W2158118143 @default.
- W1570691602 cites W2158385520 @default.
- W1570691602 cites W2158656801 @default.
- W1570691602 cites W2165034119 @default.
- W1570691602 cites W2166417742 @default.
- W1570691602 cites W2320379819 @default.
- W1570691602 cites W3217032905 @default.
- W1570691602 cites W4254326963 @default.
- W1570691602 doi "https://doi.org/10.1002/2014ea000014" @default.
- W1570691602 hasPublicationYear "2014" @default.
- W1570691602 type Work @default.
- W1570691602 sameAs 1570691602 @default.
- W1570691602 citedByCount "34" @default.
- W1570691602 countsByYear W15706916022014 @default.
- W1570691602 countsByYear W15706916022015 @default.
- W1570691602 countsByYear W15706916022016 @default.
- W1570691602 countsByYear W15706916022017 @default.
- W1570691602 countsByYear W15706916022018 @default.
- W1570691602 countsByYear W15706916022019 @default.
- W1570691602 countsByYear W15706916022020 @default.
- W1570691602 countsByYear W15706916022021 @default.
- W1570691602 countsByYear W15706916022022 @default.
- W1570691602 countsByYear W15706916022023 @default.
- W1570691602 crossrefType "journal-article" @default.
- W1570691602 hasAuthorship W1570691602A5002682560 @default.
- W1570691602 hasAuthorship W1570691602A5023168843 @default.
- W1570691602 hasAuthorship W1570691602A5035865871 @default.
- W1570691602 hasAuthorship W1570691602A5061700146 @default.
- W1570691602 hasAuthorship W1570691602A5065613655 @default.
- W1570691602 hasBestOaLocation W15706916021 @default.
- W1570691602 hasConcept C10899652 @default.
- W1570691602 hasConcept C111919701 @default.
- W1570691602 hasConcept C121332964 @default.
- W1570691602 hasConcept C127313418 @default.
- W1570691602 hasConcept C147534773 @default.