Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570700205> ?p ?o ?g. }
- W1570700205 abstract "Real-world phenomena involve complex interactions between multiple signal modalities. As a consequence, humans are used to integrate at each instant perceptions from all their senses in order to enrich their understanding of the surrounding world. This paradigm can be also extremely useful in many signal processing and computer vision problems involving sets of mutually related signals, called multi-modal signals. The simultaneous processing of multi-modal data can in fact reveal information that is otherwise hidden when considering the different modalities independently. This dissertation deals with the modelling and the analysis of natural multi-modal signals. The challenge consists in representing sets of data streams of different nature, like audio-video sequences, that are interrelated in some complex and unknown manner, in such a way that useful information shared by the different data modalities can be extracted and intuitively used. In this sense signal representation have to make an effort to model the structural properties of the observed phenomenon, so that data are expressed in terms of few, meaningful elements. In fact, if information can be represented using only few components, this means that such components capture its salient characteristics. In order to efficiently represent multi-modal data, we advocate the use of sparse signal decompositions over redundant sets of functions (called dictionaries). In this thesis we consider both application-related and theoretical aspects of multi-modal signal processing. We propose two models for multi-modal signals that explain multi-modal phenomena in terms of temporally-proximal events present in the different modalities. A first simple model is inspired by human perception of multi-modal stimuli and it relies on the representation of the different data streams as sparse sums of dictionary elements. This type of representation allows to intuitively define meaningful events present in the different modalities and to discover correlated multi-modal patterns. Taking inspiration by this first model, we introduce a representational framework for multi-modal data based on their sparse decomposition over dictionaries of multi-modal functions. Instead of separately decompose each modality over a dictionary and seek for correlations between the extracted patterns, we impose some correlation between modalities at the model level. Since such correlations are difficult to formalize, we propose as well a method to learn dictionaries of synchronous multi-modal basis elements. Concerning the applications presented in this dissertation, we tackle two major audiovisual fusion problems, that are audiovisual source localization and separation. Although many of the ideas developed in this work are completely general, we consider this field since it is the one that presents the vastest possibilities of application for this research. The theoretical frameworks developed throughout the thesis are used to localize, separate and extract audio-video sources in audiovisual sequences. Algorithms for cross-modal source localization and blind audiovisual source separation are tested on challenging real-world multimedia sequences. Experiments show that the proposed approach leads to promising results for several newly designed multi-modal signal processing algorithms and that a careful modelling of data structural properties can convey interesting, useful information to understand complex multi-modal phenomena." @default.
- W1570700205 created "2016-06-24" @default.
- W1570700205 creator A5077875525 @default.
- W1570700205 date "2007-01-01" @default.
- W1570700205 modified "2023-09-23" @default.
- W1570700205 title "On the modelling of multi-modal data using redundant dictionaries" @default.
- W1570700205 cites W115983144 @default.
- W1570700205 cites W1559371027 @default.
- W1570700205 cites W1560013842 @default.
- W1570700205 cites W1567118643 @default.
- W1570700205 cites W1570419640 @default.
- W1570700205 cites W1574316096 @default.
- W1570700205 cites W1594401150 @default.
- W1570700205 cites W1601587639 @default.
- W1570700205 cites W1748744376 @default.
- W1570700205 cites W1769974409 @default.
- W1570700205 cites W177229737 @default.
- W1570700205 cites W189426885 @default.
- W1570700205 cites W1910610070 @default.
- W1570700205 cites W1958897367 @default.
- W1570700205 cites W1964538581 @default.
- W1570700205 cites W1986931325 @default.
- W1570700205 cites W1987906574 @default.
- W1570700205 cites W1996440979 @default.
- W1570700205 cites W2000469873 @default.
- W1570700205 cites W2010055427 @default.
- W1570700205 cites W2010219725 @default.
- W1570700205 cites W2014621385 @default.
- W1570700205 cites W2015394094 @default.
- W1570700205 cites W2021302824 @default.
- W1570700205 cites W2021437674 @default.
- W1570700205 cites W2026914444 @default.
- W1570700205 cites W2029192628 @default.
- W1570700205 cites W2032099237 @default.
- W1570700205 cites W2033966334 @default.
- W1570700205 cites W2038010270 @default.
- W1570700205 cites W2044222806 @default.
- W1570700205 cites W2048277372 @default.
- W1570700205 cites W2061659108 @default.
- W1570700205 cites W2063698478 @default.
- W1570700205 cites W2065428732 @default.
- W1570700205 cites W2082604112 @default.
- W1570700205 cites W2093772147 @default.
- W1570700205 cites W2096391593 @default.
- W1570700205 cites W2098717567 @default.
- W1570700205 cites W2099111195 @default.
- W1570700205 cites W2099151709 @default.
- W1570700205 cites W2100206859 @default.
- W1570700205 cites W2100561338 @default.
- W1570700205 cites W2103453322 @default.
- W1570700205 cites W2103504761 @default.
- W1570700205 cites W2105464873 @default.
- W1570700205 cites W2106488367 @default.
- W1570700205 cites W2107050683 @default.
- W1570700205 cites W2108211773 @default.
- W1570700205 cites W2109124605 @default.
- W1570700205 cites W2110744759 @default.
- W1570700205 cites W2111304728 @default.
- W1570700205 cites W2111844072 @default.
- W1570700205 cites W2113651262 @default.
- W1570700205 cites W2114614491 @default.
- W1570700205 cites W2115275510 @default.
- W1570700205 cites W2118020555 @default.
- W1570700205 cites W2118847468 @default.
- W1570700205 cites W2118877769 @default.
- W1570700205 cites W2119647652 @default.
- W1570700205 cites W2119688524 @default.
- W1570700205 cites W2121861296 @default.
- W1570700205 cites W2122315118 @default.
- W1570700205 cites W2123649031 @default.
- W1570700205 cites W2125045933 @default.
- W1570700205 cites W2126366445 @default.
- W1570700205 cites W2126779329 @default.
- W1570700205 cites W2127851351 @default.
- W1570700205 cites W2132103241 @default.
- W1570700205 cites W2135338342 @default.
- W1570700205 cites W2140499889 @default.
- W1570700205 cites W2141224535 @default.
- W1570700205 cites W2142940228 @default.
- W1570700205 cites W2144681770 @default.
- W1570700205 cites W2145117854 @default.
- W1570700205 cites W2145379201 @default.
- W1570700205 cites W2145643136 @default.
- W1570700205 cites W2147301311 @default.
- W1570700205 cites W2147920693 @default.
- W1570700205 cites W2148659689 @default.
- W1570700205 cites W2149759492 @default.
- W1570700205 cites W2149846926 @default.
- W1570700205 cites W2150133190 @default.
- W1570700205 cites W2151103935 @default.
- W1570700205 cites W2151693816 @default.
- W1570700205 cites W2151994771 @default.
- W1570700205 cites W2154151281 @default.
- W1570700205 cites W2154496665 @default.
- W1570700205 cites W2154636774 @default.
- W1570700205 cites W2160337655 @default.
- W1570700205 cites W2161219071 @default.
- W1570700205 cites W2164335482 @default.
- W1570700205 cites W2164899449 @default.
- W1570700205 cites W2166847868 @default.