Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570746489> ?p ?o ?g. }
- W1570746489 abstract "The small sample sizes often used for microarray experiments result in poor estimates of variance if each gene is considered independently. Yet accurately estimating variability of gene expression measurements in microarray experiments is essential for correctly identifying differentially expressed genes. Several recently developed methods for testing differential expression of genes utilize hierarchical Bayesian models to pool information from multiple genes. We have developed a statistical testing procedure that further improves upon current methods by incorporating the well-documented relationship between the absolute gene expression level and the variance of gene expression measurements into the general empirical Bayes framework.We present a novel Bayesian moderated-T, which we show to perform favorably in simulations, with two real, dual-channel microarray experiments and in two controlled single-channel experiments. In simulations, the new method achieved greater power while correctly estimating the true proportion of false positives, and in the analysis of two publicly-available spike-in experiments, the new method performed favorably compared to all tested alternatives. We also applied our method to two experimental datasets and discuss the additional biological insights as revealed by our method in contrast to the others. The R-source code for implementing our algorithm is freely available at http://eh3.uc.edu/ibmt.We use a Bayesian hierarchical normal model to define a novel Intensity-Based Moderated T-statistic (IBMT). The method is completely data-dependent using empirical Bayes philosophy to estimate hyperparameters, and thus does not require specification of any free parameters. IBMT has the strength of balancing two important factors in the analysis of microarray data: the degree of independence of variances relative to the degree of identity (i.e. t-tests vs. equal variance assumption), and the relationship between variance and signal intensity. When this variance-intensity relationship is weak or does not exist, IBMT reduces to a previously described moderated t-statistic. Furthermore, our method may be directly applied to any array platform and experimental design. Together, these properties show IBMT to be a valuable option in the analysis of virtually any microarray experiment." @default.
- W1570746489 created "2016-06-24" @default.
- W1570746489 creator A5002224386 @default.
- W1570746489 creator A5011227457 @default.
- W1570746489 creator A5028712728 @default.
- W1570746489 creator A5057856712 @default.
- W1570746489 creator A5079559062 @default.
- W1570746489 creator A5088474387 @default.
- W1570746489 date "2006-12-01" @default.
- W1570746489 modified "2023-10-18" @default.
- W1570746489 title "Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments" @default.
- W1570746489 cites W1497071712 @default.
- W1570746489 cites W1527927437 @default.
- W1570746489 cites W1570746489 @default.
- W1570746489 cites W1854803455 @default.
- W1570746489 cites W1943548283 @default.
- W1570746489 cites W1964186257 @default.
- W1570746489 cites W1964895626 @default.
- W1570746489 cites W1966517569 @default.
- W1570746489 cites W1968217797 @default.
- W1570746489 cites W1985918663 @default.
- W1570746489 cites W1990874048 @default.
- W1570746489 cites W1992459316 @default.
- W1570746489 cites W1995017987 @default.
- W1570746489 cites W2002810210 @default.
- W1570746489 cites W2021129827 @default.
- W1570746489 cites W2024584876 @default.
- W1570746489 cites W2026959257 @default.
- W1570746489 cites W2039528155 @default.
- W1570746489 cites W2059919590 @default.
- W1570746489 cites W2072438213 @default.
- W1570746489 cites W2073802004 @default.
- W1570746489 cites W2074089196 @default.
- W1570746489 cites W2079034109 @default.
- W1570746489 cites W2079049876 @default.
- W1570746489 cites W2081098333 @default.
- W1570746489 cites W2093852073 @default.
- W1570746489 cites W2097841073 @default.
- W1570746489 cites W2107751776 @default.
- W1570746489 cites W2109453886 @default.
- W1570746489 cites W2110891968 @default.
- W1570746489 cites W2112366228 @default.
- W1570746489 cites W2119274294 @default.
- W1570746489 cites W2127938920 @default.
- W1570746489 cites W2133033416 @default.
- W1570746489 cites W2139290043 @default.
- W1570746489 cites W2144227498 @default.
- W1570746489 cites W2147208800 @default.
- W1570746489 cites W2154312242 @default.
- W1570746489 cites W2155977900 @default.
- W1570746489 cites W2157795344 @default.
- W1570746489 cites W2160697532 @default.
- W1570746489 cites W2166185528 @default.
- W1570746489 cites W2170264612 @default.
- W1570746489 cites W2171738540 @default.
- W1570746489 cites W2184663617 @default.
- W1570746489 cites W2257333659 @default.
- W1570746489 cites W2314836818 @default.
- W1570746489 cites W2342294623 @default.
- W1570746489 cites W2401143319 @default.
- W1570746489 cites W4294107304 @default.
- W1570746489 cites W4294658238 @default.
- W1570746489 cites W2008191121 @default.
- W1570746489 cites W2054528194 @default.
- W1570746489 doi "https://doi.org/10.1186/1471-2105-7-538" @default.
- W1570746489 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1781470" @default.
- W1570746489 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17177995" @default.
- W1570746489 hasPublicationYear "2006" @default.
- W1570746489 type Work @default.
- W1570746489 sameAs 1570746489 @default.
- W1570746489 citedByCount "226" @default.
- W1570746489 countsByYear W15707464892012 @default.
- W1570746489 countsByYear W15707464892013 @default.
- W1570746489 countsByYear W15707464892014 @default.
- W1570746489 countsByYear W15707464892015 @default.
- W1570746489 countsByYear W15707464892016 @default.
- W1570746489 countsByYear W15707464892017 @default.
- W1570746489 countsByYear W15707464892018 @default.
- W1570746489 countsByYear W15707464892019 @default.
- W1570746489 countsByYear W15707464892020 @default.
- W1570746489 countsByYear W15707464892021 @default.
- W1570746489 countsByYear W15707464892022 @default.
- W1570746489 countsByYear W15707464892023 @default.
- W1570746489 crossrefType "journal-article" @default.
- W1570746489 hasAuthorship W1570746489A5002224386 @default.
- W1570746489 hasAuthorship W1570746489A5011227457 @default.
- W1570746489 hasAuthorship W1570746489A5028712728 @default.
- W1570746489 hasAuthorship W1570746489A5057856712 @default.
- W1570746489 hasAuthorship W1570746489A5079559062 @default.
- W1570746489 hasAuthorship W1570746489A5088474387 @default.
- W1570746489 hasBestOaLocation W15707464891 @default.
- W1570746489 hasConcept C104317684 @default.
- W1570746489 hasConcept C105795698 @default.
- W1570746489 hasConcept C107673813 @default.
- W1570746489 hasConcept C124101348 @default.
- W1570746489 hasConcept C129848803 @default.
- W1570746489 hasConcept C142291917 @default.
- W1570746489 hasConcept C150194340 @default.
- W1570746489 hasConcept C154945302 @default.
- W1570746489 hasConcept C193244246 @default.