Matches in SemOpenAlex for { <https://semopenalex.org/work/W1570751785> ?p ?o ?g. }
- W1570751785 endingPage "1044" @default.
- W1570751785 startingPage "1017" @default.
- W1570751785 abstract "Zhang, Kechen, Iris Ginzburg, Bruce L. McNaughton, and Terrence J. Sejnowski. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 79: 1017–1044, 1998. Physical variables such as the orientation of a line in the visual field or the location of the body in space are coded as activity levels in populations of neurons. Reconstruction or decoding is an inverse problem in which the physical variables are estimated from observed neural activity. Reconstruction is useful first in quantifying how much information about the physical variables is present in the population and, second, in providing insight into how the brain might use distributed representations in solving related computational problems such as visual object recognition and spatial navigation. Two classes of reconstruction methods, namely, probabilistic or Bayesian methods and basis function methods, are discussed. They include important existing methods as special cases, such as population vector coding, optimal linear estimation, and template matching. As a representative example for the reconstruction problem, different methods were applied to multi-electrode spike train data from hippocampal place cells in freely moving rats. The reconstruction accuracy of the trajectories of the rats was compared for the different methods. Bayesian methods were especially accurate when a continuity constraint was enforced, and the best errors were within a factor of two of the information-theoretic limit on how accurate any reconstruction can be and were comparable with the intrinsic experimental errors in position tracking. In addition, the reconstruction analysis uncovered some interesting aspects of place cell activity, such as the tendency for erratic jumps of the reconstructed trajectory when the animal stopped running. In general, the theoretical values of the minimal achievable reconstruction errors quantify how accurately a physical variable is encoded in the neuronal population in the sense of mean square error, regardless of the method used for reading out the information. One related result is that the theoretical accuracy is independent of the width of the Gaussian tuning function only in two dimensions. Finally, all the reconstruction methods considered in this paper can be implemented by a unified neural network architecture, which the brain feasibly could use to solve related problems." @default.
- W1570751785 created "2016-06-24" @default.
- W1570751785 creator A5019015929 @default.
- W1570751785 creator A5041993733 @default.
- W1570751785 creator A5044141636 @default.
- W1570751785 creator A5048107277 @default.
- W1570751785 date "1998-02-01" @default.
- W1570751785 modified "2023-10-16" @default.
- W1570751785 title "Interpreting Neuronal Population Activity by Reconstruction: Unified Framework With Application to Hippocampal Place Cells" @default.
- W1570751785 cites W136151004 @default.
- W1570751785 cites W1504615859 @default.
- W1570751785 cites W1558736138 @default.
- W1570751785 cites W1568903867 @default.
- W1570751785 cites W1572294349 @default.
- W1570751785 cites W1579462696 @default.
- W1570751785 cites W1603077448 @default.
- W1570751785 cites W1630370318 @default.
- W1570751785 cites W1642392761 @default.
- W1570751785 cites W1782544448 @default.
- W1570751785 cites W1826201647 @default.
- W1570751785 cites W1835943509 @default.
- W1570751785 cites W1864699459 @default.
- W1570751785 cites W1867287134 @default.
- W1570751785 cites W1944592753 @default.
- W1570751785 cites W1969769253 @default.
- W1570751785 cites W1974719406 @default.
- W1570751785 cites W1976027541 @default.
- W1570751785 cites W1977908343 @default.
- W1570751785 cites W1978385102 @default.
- W1570751785 cites W1983533291 @default.
- W1570751785 cites W1983560663 @default.
- W1570751785 cites W1984931175 @default.
- W1570751785 cites W1988184428 @default.
- W1570751785 cites W1988633143 @default.
- W1570751785 cites W1988831155 @default.
- W1570751785 cites W1994839334 @default.
- W1570751785 cites W1996692737 @default.
- W1570751785 cites W1998955447 @default.
- W1570751785 cites W2000775105 @default.
- W1570751785 cites W2004478098 @default.
- W1570751785 cites W2004725045 @default.
- W1570751785 cites W2008240154 @default.
- W1570751785 cites W2011909683 @default.
- W1570751785 cites W2020272049 @default.
- W1570751785 cites W2033218028 @default.
- W1570751785 cites W2040739363 @default.
- W1570751785 cites W2041800086 @default.
- W1570751785 cites W2044341336 @default.
- W1570751785 cites W2046409972 @default.
- W1570751785 cites W2052515926 @default.
- W1570751785 cites W2053197265 @default.
- W1570751785 cites W2055373425 @default.
- W1570751785 cites W2063379973 @default.
- W1570751785 cites W2067497461 @default.
- W1570751785 cites W2071290167 @default.
- W1570751785 cites W2079390801 @default.
- W1570751785 cites W2082495338 @default.
- W1570751785 cites W2086472796 @default.
- W1570751785 cites W2087629825 @default.
- W1570751785 cites W2088744610 @default.
- W1570751785 cites W2092214469 @default.
- W1570751785 cites W2103853773 @default.
- W1570751785 cites W2113273079 @default.
- W1570751785 cites W2119565218 @default.
- W1570751785 cites W2149422514 @default.
- W1570751785 cites W2153564253 @default.
- W1570751785 cites W2162720865 @default.
- W1570751785 cites W2165443127 @default.
- W1570751785 cites W2166405697 @default.
- W1570751785 cites W2167403166 @default.
- W1570751785 cites W2314288977 @default.
- W1570751785 cites W2329323183 @default.
- W1570751785 cites W2471446479 @default.
- W1570751785 cites W3110737227 @default.
- W1570751785 cites W4232795187 @default.
- W1570751785 cites W4235952985 @default.
- W1570751785 cites W4241102178 @default.
- W1570751785 doi "https://doi.org/10.1152/jn.1998.79.2.1017" @default.
- W1570751785 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9463459" @default.
- W1570751785 hasPublicationYear "1998" @default.
- W1570751785 type Work @default.
- W1570751785 sameAs 1570751785 @default.
- W1570751785 citedByCount "624" @default.
- W1570751785 countsByYear W15707517852012 @default.
- W1570751785 countsByYear W15707517852013 @default.
- W1570751785 countsByYear W15707517852014 @default.
- W1570751785 countsByYear W15707517852015 @default.
- W1570751785 countsByYear W15707517852016 @default.
- W1570751785 countsByYear W15707517852017 @default.
- W1570751785 countsByYear W15707517852018 @default.
- W1570751785 countsByYear W15707517852019 @default.
- W1570751785 countsByYear W15707517852020 @default.
- W1570751785 countsByYear W15707517852021 @default.
- W1570751785 countsByYear W15707517852022 @default.
- W1570751785 countsByYear W15707517852023 @default.
- W1570751785 crossrefType "journal-article" @default.
- W1570751785 hasAuthorship W1570751785A5019015929 @default.
- W1570751785 hasAuthorship W1570751785A5041993733 @default.